

Visual Test Extensions

U S E R ’ S G U I D E

Visual Test Extensions
User’s Guide

Revision C - June 1996
Part Number: 81580

TM

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte, Visual Test Extensions, and VTX are trademarks of Keithley Instruments, Inc. All other
brand and product names are trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1995, 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Overview of this Guide ix

Introducing VTX

Visual Test Extensions

™

 (VTX

™

) is a powerful system of software tools
that enable you to create high-performance data acquisition, analysis, and
graphing applications within the Microsoft

®

Visual Basic

™

for Windows

™

programming environment. VTX software tools include an

integrated

 set
of custom controls. By using VTX software with Visual Basic, you can

●

Build high-performance Windows measurement systems quickly and
easily.

●

Integrate data acquisition, counter/timer, analysis, data display, logic,
and graphing functions in the same application.

●

Incorporate any third-party products designed for the Visual Basic
environment in your application.

●

Create simple applications using graphical programming or complex
applications using graphical and code-based programming.

Overview of this Guide

The

Visual Test Extensions User’s Guide

 introduces the VTX system of
custom controls. The online help that accompanies the VTX software
provides detailed information about the VTX system.

Before using the VTX system, it is strongly recommended that you have
an understanding of

●

Microsoft Windows, version 3.1 or higher (including Windows 95)

●

Visual Basic for Windows, version 3.0 or the 16-bit versions of Visual
Basic, version 4.0 (Professional and Enterprise Editions). (Note that
the Standard Edition of Visual Basic 4.0 does not support 16-bit
controls.)

●

Data acquisition principles

●

Data acquisition hardware for which you are writing applications

x Introducing VTX

This guide and the online help for the VTX system are written with the
assumption that you understand the fundamental programming
techniques of Visual Basic, especially the concept of event-driven
programming. In addition, it is assumed that you know the capabilities of
your data acquisition boards and the options available. Refer to the
documentation for Visual Basic, Windows, and your data acquisition
boards for basic information about these products.

This guide contains the following chapters:

●

Chapter 1, Installing VTX Software

, lists the system requirements
and explains how to install the VTX software.

●

Chapter 2, Creating Your First VTX Application,

 provides a
tutorial for quickly creating a simple application using the VTX DAS
and Text controls. This chapter also provides information on using the
example programs that accompany your VTX software

.

●

Chapter 3, Understanding the VTX System

, explains the
fundamental concepts of the VTX system.

●

Chapter 4, Building Complex Applications,

describes in detail how
to create a complex data acquisition application with Visual Basic and
the VTX system.

Conventions

The VTX system provides two controls that communicate directly with
the Keithley MetraByte boards that the controls support, the DAS control
and the Counter/Timer (CTM) control. Throughout this user’s guide,
references to DAS boards or DAS hardware include all Keithley
MetraByte data acquisition hardware that the VTX DAS control currently
supports. Similarly, references to CTM boards include all Keithley
MetraByte counter/timer boards that the VTX CTM control currently
supports. Contact your Keithley MetraByte sales representative for a list
of currently supported boards.

References to Windows 3.x in this guide include Windows 3.1 and
Windows 3.11 for Workgroups only.

Conventions xi

The illustrations in this guide were created using Visual Basic 3.0 running
under Windows 3.1. As appropriate, the accompanying text describes
items that differ in Visual Basic 4.0 and in Windows 95.

The following table shows the typographic conventions used in this guide.

Example of Convention Description

F1

This bold font indicates a key name.

CTRL+C

When key names are connected by a plus (+) sign, you
press the keys simultaneously. For example,

CTRL+C

 means hold down the

CONTROL

 key
while pressing the

C

 key.

DASCtrl1.ClockSrc

The Courier font indicates program code or system
messages.

numericexpression

In syntax, italic letters indicate placeholders for values
you supply.

[form.]

In syntax, square brackets around an item indicate that
the item is optional.

{

0

|

1

}

In syntax, curly brackets and a vertical line indicate a
choice between two or more items. Unless the set of
items also falls within square brackets, you

must

choose one of the items.

SampleIndex Initial capital letters indicate the name of a language
element, such as a property.

xii Introducing VTX

Using Online Help

The online help system for the VTX software includes

●

Overview information on the VTX system and on each VTX control

●

Generalized procedures for setting up processes for each VTX control

●

Brief descriptions of the VTX example programs

●

Programming tips

●

Definitions of VTX properties, functions, and events

●

Valid ranges or values for properties

●

Code examples that you can cut and paste into your application

●

Error information

The VTX help system has a general overview help file from which you
can access information on all VTX controls and the example programs. In
addition, the help system contains a separate help file for each VTX
control. All of these help files are installed by default.

To provide specific information for the different Keithley MetraByte
boards supported by the VTX software, the VTX help system also
contains board-specific help files. When installing the board-specific
software, the VTX installation program copies the associated
board-specific help file to your hard drive.

The VTX installation program copies VTX help files and their supporting
executable files into the same directory. To be able to access the help files
from one another, you must keep all of these files in the same directory.

Using Online Help xiii

Accessing VTX Online Help

You can access VTX online help from within Visual Basic and from the
Keithley VTX program group created at installation. The methods to
access help from Visual Basic are the same under Visual Basic 3.0 and
4.0. In addition, accessing help from either version of Visual Basic is
essentially the same under Windows 3.x and Windows 95. The following
sections describe ways to access VTX help from Visual Basic, the
Keithley VTX program group in Windows 3.x, and the Windows 95
desktop.

From Visual Basic

Use one of the following methods to access VTX online help from within
Visual Basic:

●

From the Visual Basic Toolbox, double-click the icon for a VTX
control to place the control on a Visual Basic form. With the control
still selected on the form, press

F1

. Under Windows 3.x, the main
menu (contents) for the control help is displayed. Under Windows 95,
the Help Topics dialog box appears with the Contents tab displayed.

●

Display the Properties window or More Properties window of a VTX
control. Highlight a property and then press

F1

 to display the help
topic for that property.

Note that the Properties window for each VTX control contains
properties that are standard Visual Basic properties, such as Caption
and Name. When you press

F1

 on these properties, the standard
Visual Basic online help appears.

From the Keithley VTX Program Group in Windows 3.x

The Keithley VTX program group is created when you install VTX
software. It includes two help icons (yellow question marks), one
captioned VTX Help, and the other captioned Examples. The VTX Help
icon lets you access the VTX overview help file. From the main menu
(Windows 3.x) of the overview help file, you can access the entire VTX
help system, including the Examples help file. The Examples icon
provides direct access to the descriptions of the example programs
provided with the VTX software.

xiv Introducing VTX

To access general information about the VTX system or specific
information about the controls, follow these steps:

1. Double-click the VTX Help icon to display the main menu (Windows
3.x) for the VTX overview help file.

2. From the main menu, double-click the icon or text for the topic you
are interested in. Alternatively, click the Search button in the button
bar to use the Search keyword list to locate a topic.

From the Windows 95 Desktop

One way to access VTX help from the Windows 95 desktop is to begin
with the task bar, as follows:

1. From the Windows 95 task bar, use the left mouse button to click the
Start button.

2. From the Start menu, move the mouse pointer over the Programs
item.

3. From the Programs menu, move the mouse pointer over the Keithley
VTX item.

4. From the Keithley VTX menu, click VTX Help. The Contents tab for
the VTX overview help file appears.

If you are accustomed to the Windows 3.x Program Manager and program
groups, you may want to use the Windows 95 equivalent, as follows:

1. From the Windows 95 task bar, use the

right

 mouse button to click the
Start button.

2. When the popup menu appears, click Open.

3. From the Start window, double-click the Programs icon to display the
Programs window.

4. Double-click the Keithley VTX icon.

5. From the Keithley VTX program window, double-click the yellow
question mark icon for the help file you want to read (VTX Help or
Examples).

To access VTX help from the My Computer folder, follow these steps:

1. From the Windows 95 desktop, double-click the My Computer folder
to open it.

Using Online Help xv

2. From the My Computer window, double-click the icon of the drive on
which you installed VTX software. For example, if you installed VTX
software on the C drive, click the C drive icon.

3. From the drive window, double-click the Keithley VTX folder to
display the program group window. (If you installed VTX software in
the default directory, the folder appears at the root level of the drive.
However, if you installed the VTX software elsewhere, you may need
to open another folder.)

4. To access the VTX help from the Keithley VTX window, double-click
the yellow question mark icon for the help file you want to read (VTX
Help or Examples).

Once within the VTX help system, you can access general information
about the VTX system or specific information about the controls by
following these steps:

1. If necessary, click the Contents button in the button bar near the top
of the help window to display the Contents tab of the Help Topics
dialog box.

2. From the Contents tab, double-click a book icon to display the topics
available.

3. As needed, double-click other book icons until you see the topic you
want to read (a page icon).

4. Double-click the page icon to display the topic you want to read.

Alternatively, you can click the Index button in button bar near the top of
the help window and use the Index tab of the Help Topics dialog box to
search for topics associated with a particular keyword. Note that each tab
of the Help Topics dialog box provides a system-wide view of VTX help.

Accessing Board-Specific Information

Windows help provides a button bar near the top of the window that
contains standard buttons such as Contents. To let you access information
specific to the DAS-Demo Device and to supported Keithley MetraByte
board families (for example, the DAS-1800 Series family), the VTX DAS
control help file provides two additional buttons:

●

Select Board — Displays a dialog box in which you select the
DAS-Demo Device or the Keithley MetraByte board family for

xvi Introducing VTX

which you want additional information. After selecting the family,
you must click the Board Specifics button to display the parallel topic
in the board-specific help file.

●

Board Specifics — Displays a corresponding topic for the selected
board family. For example, from the DAS control topic OpMode
Property, you can display the same topic for the DAS-1800 Series
family, which shows which operation modes are available for all
boards in the DAS-1800 Series family.

To return to the DAS control help topics, the board-specific help files
provide two buttons:

●

Back to DAS — Returns to the topic from which you jumped in the
VTX DAS control help. For example, from the OpMode Property
topic in the DAS control help, you accessed the same topic for the
DAS-1600 Series family. From that topic, you browsed forward to the
topic, Samples Property. To return to the OpMode Property topic in
the DAS control help, click the Back to DAS button.

●

Up to DAS — Displays a corresponding topic in the DAS control
help. This button performs the same function as the Board Specifics
button, in reverse. For example, you have been browsing in the topics
for the DAS-Demo Device and are reading the Samples Property
topic. To view the Samples Property topic in the DAS control help,
click the Up to DAS button.

The online help system for VTX controls is always available at design
time. By default, the help system is also available from the VTX dialog
boxes that present warnings and errors at run time. You can use the VTX
Options window of the VTX Configuration utility to disable the dialog
boxes and/or to disable access to the help system. See “Enabling and
Disabling VTX Options” on page 4-41 for details.

If your application will be used by others, you may want to add your own
help system and a Help button using the Windows applications
programming interface (API) function WINHELP. See your Visual Basic
documentation for information on using the WINHELP function.

Getting Additional Help xvii

Getting Additional Help

For additional assistance, you can call the Keithley MetraByte
Applications Engineering department at

(508) 880-3000
Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Please make sure that you have the following information available before
you call:

Visual Test

Version ____________________

Extensions

Module(s) Base Analysis Graph
Invoice/Order # ____________________
VTX Driver Disk
 Version ____________________

Visual Basic

 Version 3.0 4.0 (16-bit)

 for Windows

Edition Standard Professional
Enterprise

Operating system

DOS Version ____________________
Windows Version 3.1 3.11 95

Computer

Manufacturer ____________________
CPU type 386 486 Pentium___
Clock Speed (MHz) ____________________
Math Coprocessor Yes No
Amount of RAM ____________________
Video System VGA SVGA
 Other: ____________________
BIOS type ____________________

Boards

Series/Name ____________________
Model ____________________
Serial # ____________________
Base Address Setting ____________________
DMA Level Setting ____________________
Interrupt Level Setting ____________________

xviii Introducing VTX

Input Configuration Single-ended Differential
Input Range Type Unipolar Bipolar

Series/Name ____________________
Model ____________________
Serial # ____________________
Base Address Setting ____________________
DMA Level Setting ____________________
Interrupt Level Setting ____________________
Input Configuration Single-ended Differential
Input Range Type Unipolar Bipolar

Series/Name ____________________
Model ____________________
Serial # ____________________
Base Address Setting ____________________
DMA Level Setting ____________________
Interrupt Level Setting ____________________
Input Configuration Single-ended Differential
Input Range Type Unipolar Bipolar

Series/Name ____________________
Model ____________________
Serial # ____________________
Base Address Setting ____________________
DMA Level Setting ____________________
Interrupt Level Setting ____________________
Input Configuration Single-ended Differential
Input Range Type Unipolar Bipolar

Expansion

Type ____________________

accessories

Type ____________________
Type ____________________
Type ____________________
Type ____________________
Type ____________________
Type ____________________

Table of Contents

iii

Introducing VTX

Overview of this Guide . ix
Conventions . xi
Using Online Help . xii

Accessing VTX Online Help. .xiii
From Visual Basic .xiii
From the Keithley VTX Program Group in
Windows 3.x. .xiii
From the Windows 95 Desktop . xiv

Accessing Board-Specific Information xv
Getting Additional Help . xvii

1

Installing VTX Software

Preparing to Install VTX Software. .1-1
Checking System Requirements .1-2
Checking the Package .1-3
Backing Up the Master Disks .1-4

Installing VTX Software .1-4
Preparing to Use Boards with VTX Software1-6

Registering and Configuring Boards .1-7
Changing the Configuration of a Registered Board1-10
Deleting a Registered Board. .1-10
Changing an Alias .1-11
Specifying Engineering Units .1-12

Reserving Memory .1-15
Installing Hardware. .1-17

Loading VTX Controls. .1-18
Adding a Control to an Application Manually 1-19

Visual Basic 3.0 .1-20
Visual Basic 4.0 .1-20

Loading VTX Controls Automatically 1-21
Visual Basic 3.0 .1-22
Visual Basic 4.0 .1-23

Creating Your First VTX Application .1-24

iv

2

Creating Your First VTX Application

Assumptions. .2-1
Overview of the Application .2-2
Design the User Interface. .2-3
Set the Properties .2-9

Set the Form Properties .2-9
Set the DAS Control Properties. .2-11
Set the Text Control Properties .2-14
Set the Command Button Properties2-16

Connect the VTX Controls. .2-22
Write the Code .2-24

Write Code for the Start Button .2-25
Write Code for the Stop Button .2-27
Write Code for the Exit Button .2-28

Run the Application .2-30
What’s Next .2-31

3

Understanding the VTX System

The VTX Environment. .3-1
Processes and Process Sources .3-3
Overview of VTX Tools .3-5
Properties of VTX Controls .3-8

Control Properties .3-8
Operation-Specific Properties .3-11

Source and Destination Controls .3-14
Program Control in the VTX Environment3-16
Data in the VTX Environment .3-16

Defining the Structure of Data in the
VTX Environment .3-17
Moving Data between VTX Controls.3-18
Moving Data to and from the VTX Environment 3-19

Connections .3-20
Connection Types .3-21
Connection Points .3-22
Multiple Connections .3-25
Interform Connections .3-26

Concept Summary .3-30

v

4

Building Complex Applications

Planning the Application .4-2
Designing the User Interface .4-3
Setting Properties .4-5
Connecting VTX Controls .4-6

Displaying the Order of Multiple Connections.4-7
Changing the Order of Multiple Connections.4-8
Drawing Interform Connections .4-9
Deleting Connections .4-11

Writing Code .4-12
VTX Events. .4-13

ProcessDone Event. .4-14
ProcessError Event .4-15
ProcessCTMDone Event .4-15
NDataDone Event. .4-16
Text Control Events .4-16

VTX Functions .4-17
Integration of the User Interface and Supporting Tasks4-19

Accepting User Input .4-21
Starting/Stopping Operations .4-24

Click Event Procedure - Starting VTX Controls4-25
Click Event Procedure - Stopping VTX Controls4-25

Displaying Status .4-27
Displaying Data .4-27

Displaying a Scalar .4-28
Displaying Data in a VTX Grid.4-29
Graphing Data .4-33
Displaying Data in a List Box4-34
Displaying Data in a Windows Spreadsheet4-35

Error Handling .4-36
Execution Errors. .4-37
Process Warnings and Errors .4-38

Testing, Debugging, and Preparing for Distribution 4-39
Using Visual Basic Debugging Tools with
VTX Controls .4-40
Enabling and Disabling VTX Options 4-41
Selecting Files for Distribution .4-42

Board-Specific Files .4-43
INI Files .4-44
VDMAD.386 File (Windows 3.x)4-45

VTX Software Already Installed.4-45
VTX Software Not Installed .4-46

vi

VDMAD.VXD File (Windows 95) 4-47
VTX Software Already Installed.4-47
VTX Software Not Installed .4-47

Index

List of Figures

Figure 1-1. DAS Hardware Configuration Window 1-8
Figure 1-2. List of Aliases .1-11
Figure 1-3. Engineering Units Window1-13
Figure 1-4. Keithley Memory Manager Window

 (Windows 3.x Version).1-16
Figure 2-1. Displaying a Single Data Point -

Design-Time View. .2-2
Figure 2-2. Displaying a Single Data Point -

Run-Time View .2-3
Figure 3-1. Properties Window for the DAS Control

(Visual Basic 3.0) .3-9
Figure 3-2. More Properties Window for the DAS Control . .3-11
Figure 3-3. Effects of Changing the Process Source

on the More Properties Window3-12
Figure 3-4. Effects of Changing Property Values

in the More Properties Window.3-13
Figure 3-5. Source and Destination Controls3-14
Figure 3-6. Multiple Source Controls to a Single

Destination Control .3-15
Figure 3-7. Example of a Data Group in the

VTX Environment .3-17
Figure 3-8. Example of Moving Data to and from the

VTX Environment .3-19
Figure 3-9. Types of Connections .3-21
Figure 3-10. Examples of Connection Points.3-23
Figure 3-11. VTX Logic Control Connection Points3-24
Figure 3-12. Data, CTM, and Computation Control

Output Connection Points3-25
Figure 3-13. Multiple Connections to the Same

Connection Point .3-26
Figure 3-14. Example of Interform Connections3-27
Figure 3-15. Using Separate Forms and Interform

Connections .3-28

vii

Figure 3-16. Example of the Interform Connection
Dialog Box. .3-29

Figure 4-1. Using Separate Forms for a Complex
VTX Application .4-3

Figure 4-2. Multiple Connections to the Same
Input Connection Point .4-7

Figure 4-3. Changing the Order of Connections 4-8
Figure 4-4. Interform Connection Example4-10
Figure 4-5. Selecting Connections for Deletion4-12
Figure 4-6. VTX DAS Example 3 .4-20
Figure 4-7. Displaying a Single Data Point -

Design-Time View. .4-28
Figure 4-8. Displaying a Single Data Point -

Run-Time View .4-29
Figure 4-9. Displaying Data in a Grid -

Design-Time View. .4-30
Figure 4-10. Displaying Data in a Grid - Run-Time View. . . .4-31
Figure 4-11. Graphing Data .4-33
Figure 4-12. Displaying Data in a Visual Basic List Box 4-34
Figure 4-13. Transferring Data to a Spreadsheet4-36

List of Tables

Table 1-1. Backup Commands .1-4
Table 1-2. VTX Control Filenames.1-18
Table 3-1. VTX Controls, Processes, and Process

Sources. .3-4
Table 3-2. Properties Common to all VTX Controls 3-10
Table 4-1. Visual Basic Events for Text Control

Processes .4-17
Table 4-2. Files Required for Distributing VTX

Applications .4-42

Preparing to Install VTX Software 1-1

1

Installing VTX Software

To get started quickly with the Visual Test Extensions (VTX) system, this
chapter explains the steps necessary to install the VTX software. These
steps include

1. Preparing for installation.

2. Installing VTX software.

3. Preparing to use boards with VTX software.

4. Loading the VTX controls into the Visual Basic Toolbox (if you have
not chosen to load them during installation).

5. Creating your first VTX application.

Note:

The master disk #1 of the VTX DAS Base Module provides an
uncompressed text file (INSTALL.TXT) that also explains how to install
the VTX software. If you are upgrading your VTX software, check this
file for pertinent information before installing the upgrade software. You

can read INSTALL.TXT with any text editor.

Preparing to Install VTX Software

Before you install the VTX software, you need to

1. Check that the system on which you are installing the VTX software
meets the system requirements.

2. Check the contents of your VTX package.

3. Make backup copies of the master disks.

1-2 Installing VTX Software

Note:

The VTX software provides a board simulation tool, called the
DAS-Demo Device. You can use the DAS-Demo Device to develop
applications without installing your Keithley MetraByte board and related

software.

The following subsections describe each of these steps in more detail.

Checking System Requirements

To use the VTX system, ensure that the computer on which you are
installing the software meets the following hardware and software
requirements:

●

IBM

®

-compatible computer with an 80386DX or higher processor

●

Data acquisition boards available or installed

●

A 3 1/2-inch floppy drive

●

VGA, SVGA, or compatible monitor

●

A mouse and supporting software

●

MS-DOS

®

, version 5.0 or higher

●

Windows, version 3.1 or higher, in standard or enhanced mode, or
Windows 95

●

Visual Basic for Windows, version 3.0 (Standard or Professional
Editions) or Visual Basic for Windows, version 4.0 (16-bit versions of
the Professional and Enterprise Editions only). The Standard Edition
of Visual Basic 4.0 does not support 16-bit controls.

Ensure that the computer has memory and hard disk space that are
sufficient to support the data acquisition boards, your version of
Windows, and Visual Basic for Windows in addition to the VTX system
files.

Preparing to Install VTX Software 1-3

Checking the Package

The basic VTX package contains

●

VTX DAS Base Module master disks (3)

●

VTX Driver master disk (1)

●

This guide,

Visual Test Extensions User’s Guide

The VTX DAS Base Module master disks contain the basic VTX
software, including the CTM, DAS, Data, Logic, Text, and Transfer
control software and VTX system software. The VTX Driver master disk
contains the board-specific software (drivers) required to use the VTX
software with Keithley MetraByte hardware. See “Installing VTX
Software,” on page 1-4 for details on installing the appropriate drivers for
your board.

Note:

If you purchase a Keithley MetraByte board that became available
after the current version of the VTX software, use the VTX Driver disk

that accompanies the board to install the VTX driver for that board.

The optional VTX modules contain

●

VTX Analysis Module master disk (1)

●

VTX Graph Module master disk (1)

If any disk is missing, call the Keithley MetraByte Applications
Engineering department. See “Getting Additional Help,” on page xvii.

1-4 Installing VTX Software

Backing Up the Master Disks

Before you install the VTX software, back up the master disks. Use one of
the commands shown in Table 1-1.

Installing VTX Software

Use the following steps to install VTX software from either Windows 3.x
or Windows 95:

1. Insert master disk #1 of the VTX DAS Base Module in the
appropriate disk drive.

2. With Windows 3.x running, click Run on the File menu.

With Windows 95 running, click the Start button in the task bar and
then click Run on the Start menu.

3. In the Run dialog box, enter the appropriate drive letter and the setup
command. For example, if the disk is in drive A, enter

a:\setup

4. Follow the prompts to complete the installation process.

Table 1-1. Backup Commands

From Use

Windows 3.x

File menu in File Manager Copy command

Disk menu in File Manager Copy Disk command

DOS prompt COPY or DISKCOPY command

Windows 95

Edit menu of Explorer Copy and Paste commands

Edit menu of Keithley
VTX program group
window, which is
accessible from My
Computer or Start button
in the task bar

Copy and Paste commands

Installing VTX Software 1-5

The installation program checks for the board-specific software
required to use the VTX software with your Keithley MetraByte
hardware. If the board-specific software requires an upgrade or is not
installed on your computer, the installation program provides the
option of upgrading or installing the board-specific software.

If you choose not to upgrade or install the board-specific software at
this time, you can run the VTX installation program again at your
convenience. When you run the program again, choose the option to
customize the installation. At the Custom Installation dialog box,
choose only the board-specific software option (deselect all other
options). Follow the prompts to upgrade or install the board-specific
software.

5. If it successfully locates Visual Basic, the installation program gives
you the option of automatically adding the VTX controls to your
Visual Basic Toolbox through the AUTOLOAD.MAK (Visual Basic
3.0) or AUTO16LD.VBP (Visual Basic 4.0) project. If you plan to use
the VTX controls in most of your Visual Basic applications, you may
want to take advantage of this option. If not, you can add the VTX
controls manually to each application as needed. See the section
“Adding a Control to an Application Manually,” on page 1-19 for
instructions.

When software installation is complete, check the README file for
information that was not available before this guide was printed. You can
read this file at any time by clicking the README icon in the Keithley
VTX program group of the Windows 3.x Program Manager or by
choosing in succession Start, Programs, Keithley VTX, and README
from the Windows 95 task bar.

After checking the README file, you can start using the VTX controls
with Visual Basic as long as you chose to add them automatically during
installation. (If you chose not to add them automatically to the Toolbox,
see “Loading VTX Controls,” on page 1-18 for instructions.)

You can use the DAS-Demo Device that accompanies VTX software to
simulate data acquisition operations. Before you can set up and run
applications using a Keithley MetraByte board, you must use the VTX
Configuration utility to register and configure your board. See the next
section for details.

1-6 Installing VTX Software

Notes:

Even if you installed and configured a Keithley MetraByte board
prior to receiving the VTX software, you must register and configure the
board for use with the VTX software.

If you should need to remove the VTX software from the computer, you
may want to use the Uninstall VTX program. The program is accessible
through the Uninstall VTX icon in the Keithley VTX program group.

If you have not already installed it, do not install the board until after you
have installed all the software and prepared the board for use with the

VTX software.

Preparing to Use Boards with VTX Software

VTX software includes a special utility, the VTX Configuration utility,
that provides the following configuration windows:

●

DAS Hardware - For registering and configuring your Keithley
MetraByte data acquisition boards for use with VTX software. Before
you can use your boards with the VTX software and Visual Basic, you
must register and configure the boards with the DAS Hardware
configuration window.

The DAS Hardware configuration window also provides access to an
Engineering Units window, where you can specify the type of sensor
or equation to use in converting analog input data into engineering
units. Converting data is optional. You can do this at the time you
register and configure the board or later when you are setting up the
analog input operation.

●

Keithley Memory Manager - For allocating system memory for VTX
data acquisition applications. You may want to increase the amount
of system memory allocated for VTX data acquisition applications by
the Keithley Memory Manager (KMM). By default the KMM
allocates 128K bytes of memory. See “Reserving Memory,” on page
1-15 for details.

Preparing to Use Boards with VTX Software 1-7

●

VTX Options - For specifying options for the VTX programming
environment. The default values for the VTX Options should suffice
while you are developing applications. You may want to change the
options if you release an application to other users. See “Enabling and
Disabling VTX Options,” on page 4-41 for details.

The following subsections explain how to use the DAS Hardware
configuration window to register and configure boards for use with VTX
software.

Registering and Configuring Boards

To register and configure your Keithley MetraByte boards for use with
VTX software, perform the following steps:

1. From the Keithley VTX group window in the Windows 3.x Program
Manager, double-click the VTX Configuration icon.

From the Windows 95 task bar, click Start, then slide the cursor over
Programs, then Keithley VTX, and click VTX Configuration.

1-8 Installing VTX Software

When the VTX Configuration utility window opens, the DAS
Hardware configuration window is on top, as shown in Figure 1-1.

Figure 1-1. DAS Hardware Configuration Window

2. From the DAS Hardware configuration window, choose the Add New
button to register a board for use with the VTX software. The Add
New Board dialog box appears, with a list of the board families
whose VTX-compatible software is currently installed.

Preparing to Use Boards with VTX Software 1-9

The following example of the dialog box shows many of the currently
supported Keithley MetraByte board families; a typical VTX
installation would not show as many board families:

Note:

For a board family to appear in the Add New Board dialog
box, you must have properly installed the VTX-compatible software

for the board.

3. From the Add New Board dialog box, select the family name of the
board series that is appropriate to the board you are registering. For
example, if you are using a DAS-1801ST board, select DAS-1800
Series.

4. Choose the OK button. The DAS Hardware configuration window
displays the appropriate board configuration utility. For some boards,
a DOS session of the configuration utility starts; for other boards, a
Windows utility starts.

5. When the board configuration appears, set the parameters for the
board as appropriate. See the user’s guide for the board if you need
assistance configuring the board.

6. Save the configuration and exit the board configuration utility.

If the utility is running in a DOS session, press

ESC

. Then, when
prompted, enter

Y

 to save any changes or

N

 to discard the changes
and exit.

1-10 Installing VTX Software

7. Repeat steps 2 through 6 to register and configure any additional
boards.

From the DAS Hardware configuration window, you can access online
help by pressing

F1

 or by choosing the Help button.

Changing the Configuration of a Registered Board

To change the configuration of a registered board, follow these steps:

1. Select the board from the list in the DAS Hardware configuration
window.

2. Choose the Configure button.

3. When the DAS Hardware configuration window displays the
appropriate board configuration utility, change the parameters as
appropriate to your application.

4. Save your changes and exit to the DAS Hardware configuration
window.

Deleting a Registered Board

To delete a board from the list of registered boards, follow these steps:

1. Select the board name from the list in the DAS Hardware
configuration window.

2. Choose the Remove button.

3. When prompted, choose the Yes button to confirm the deletion or the
No button to cancel the deletion.

Preparing to Use Boards with VTX Software 1-11

Changing an Alias

When you add and configure a board, the VTX software automatically
assigns a unique identifier to the board, called an

alias

. An alias is a name
that identifies a board for the VTX DAS or CTM control; the alias appears
in the list of process sources for the appropriate control. In Figure 1-2, the
default alias for the DAS-Demo Device appears in the list (Pseudo DAS
Device) along with default aliases for three PIO-12 boards and a
DAS-1801ST board.

Figure 1-2. List of Aliases

When you keep the default aliases, new boards are always assigned the
lowest board number available; when you remove a board, the numbers of
other boards in the same family are updated automatically. Using the
example in Figure 1-2, the default aliases for the PIO-12 boards are
PIO-12 Board 1, PIO-12 Board 2, and PIO-12 Board 3. Suppose you
remove the second PIO-12 board (default alias PIO-12 Board 2). The
alias for the third PIO-12 board (default alias PIO Board 3) automatically
changes to PIO-12 Board 2.

You can change the alias to a name that is more meaningful to your
application. When choosing an alias, keep in mind that VTX software
does not automatically update the aliases that you assign and that you
must assign a unique alias.

To change an alias, perform the following steps:

1. From the list in the DAS Hardware configuration window, select the
board name and alias.

2. Choose the Change Alias button.

1-12 Installing VTX Software

3. From the Change Board Alias Name dialog box, enter a new alias for
the board.

4. Choose the OK button to save the change and close the dialog box.
The new alias appears in the list.

Note:

Once you change an alias, the VTX software no longer handles the
alias as a default alias.

Even if you supply a name that is identical to the
default alias,

 the name you supply is effectively frozen and not updated if
another board in the same family is removed from the list.

In general, do not change the alias of a board that you have already

included in a VTX application.

Specifying Engineering Units

The VTX DAS control can convert analog input data into engineering
units that are useful to your application. For example, if you connect
thermocouples to your analog input channels, you can use the DAS
control to acquire data from the thermocouples and then convert the raw
analog input data to the temperature units you require. To enable the DAS
control to perform the conversion, you must perform the following tasks:

1. Specify the sensors or equations to use for the conversion in the
Engineering Units window of the VTX Configuration utility.

2. Set the properties for the analog input operation. See the topics,
"Setting Up DAS Processes" and "Setting Up Analog In Processes,"
in the online help for detailed instructions.

In particular, ensure that you set the DataConvType property of the
DAS control to Eng Units.

Note:

The Eng Units setting for the DataConvType property
automatically sets the DataType property to Single. If your
application requires a different data type, set the DataType property

accordingly.

Preparing to Use Boards with VTX Software 1-13

To specify the type of sensor or equation to use in converting acquired
data automatically during an analog input operation, perform these steps:

1. From the Keithley VTX group window in the Windows 3.x Program
Manager, click the VTX Configuration icon.

From the Windows 95 task bar, click Start, then slide the cursor over
Programs, then Keithley VTX, and click VTX Configuration.

2. From the list in the DAS Hardware configuration window, select the
board name and alias.

3. Choose the Engineering Units button. The Engineering Units
window, similar to the one in Figure 1-3, appears, with the name of
the selected board in the title bar.

Figure 1-3. Engineering Units Window

4. From the list of channels in the Engineering Units window, select the
number of the channel to define. You can select multiple, consecutive
channels by pressing

SHIFT

 and clicking or by holding the left mouse
button down and dragging the highlight across the channel numbers.
You can select multiple, non-consecutive channels by pressing

CTRL

and clicking each channel number.

1-14 Installing VTX Software

By default, the conversion type is voltage and calibration is disabled.

5. From the pull-down list in the Conversion Type option, select a
conversion type. In Figure 1-3, the Thermocouple conversion type is
selected for channel 0.

6. Depending on the conversion type you select, you may need to set
additional parameters. In Figure 1-3, the additional parameters
include the thermocouple type, temperature units, CJC type, and CJC
parameters.

7. If you want to apply calibration, click the radio button next to Yes and
then set the calibration slope and offset.

When you enable calibration here, the DAS control converts raw data
to voltages, applies the calibration, and then converts the calibrated
voltages to engineering units. You can send the converted data to the
Conversion process of the Computation control if you want to apply
another calibration after the initial conversion.

For example, suppose raw data is converted to 4.50 V. After
calibration, the DAS control converts the calibrated data of 4.51 V to
36.20

°

 C. If you then use the Computation control to calibrate the
temperature, the calibrated temperature might change to 36.24

°

 C.

Note:

The default settings for the calibration slope and offset disable
calibration. To enable calibration, you must change the calibration

slope and offset.

8. Repeat steps 4 through 7 for each channel whose data you want to
convert.

9. To save your changes and return to the main DAS Hardware
configuration window, choose the OK button. To cancel your changes
and exit to the main window, choose the Cancel button.

The Engineering Units window provides a Help button that you can use to
display additional information.

Preparing to Use Boards with VTX Software 1-15

Reserving Memory

When you install VTX software, the Keithley Memory Manager (KMM)
is automatically installed so that your VTX applications can use the
KMM instead of the appropriate Windows memory manager. If you
installed VTX software on a Windows 3.x system, the KMM reserved
128K bytes of memory for VTX data acquisition applications at
installation. If you installed VTX software on a Windows 95 system, you
need to use the KMM tab of the VTX Configuration utility to specify the
amount of memory and then restart Windows 95 to activate the KMM.

For Windows 3.x systems the VTX installation program copies a file
called VDMAD.386, which is a customized version of Microsoft's Virtual
DMA Driver (VDMAD). VDMAD.386 contains a copy of Microsoft's
Virtual DMA Driver and a group of functions added to perform the KMM
functions. The VTX installation program replaces Microsoft's Virtual
DMA Driver with the VDMAD.386 file and modifies your SYSTEM.INI
file accordingly.

For Windows 95 systems the VTX installation program copies a file
called VDMAD.VXD, which is a customized version of Microsoft's
Virtual DMA Driver (VDMAD). VDMAD.VXD contains a copy of
Microsoft's Virtual DMA Driver and a group of functions added to
perform the KMM functions. When you run the KMM tab of the VTX
Configuration utility and then restart Windows 95, the VTX software
replaces Microsoft's Virtual DMA Driver with the VDMAD.VXD file and
modifies the Windows 95 Registry and your SYSTEM.INI file
accordingly.

For any Windows system, you can change the amount of memory
reserved for your VTX applications using the following steps:

1. From the Keithley VTX group window in the Windows 3.x Program
Manager, double-click the VTX Configuration icon.

From the Windows 95 task bar, click the Start button, then move the
cursor over Programs, followed by Keithley VTX, and then click
VTX Configuration once.

2. When the DAS Hardware configuration window appears, click the
Keithley Memory Manager tab to display the KMM component of the
VTX Configuration utility.

1-16 Installing VTX Software

Figure 1-4 shows an example of the KMM window for Windows 3.x,
Enhanced Mode. The window for Windows 95 systems is very
similar; it differs only in the extension of the filename
(VDMAD.VXD instead of VDMAD.386). The VTX Configuration
utility detects the version of Windows software you are using and
presents the appropriate KMM window.

Figure 1-4. Keithley Memory Manager Window (Windows 3.x Version)

3. In the KMM window, you can see the current reserved memory in the
Current Setting field. Enter the amount of memory that your VTX
applications require in the Desired Setting field.

Preparing to Use Boards with VTX Software 1-17

The amount of memory you can reserve depends on the total
available memory and on the memory requirements of Windows and
other Windows applications. See the online help for the KMM and
the user’s guide for your board for details on reserving memory.

4. Choose the Update button.

5. When prompted, you can put the changes into effect immediately by
clicking the Restart Windows button. Note that, for Windows 3.x, the
KMM component of the VTX Configuration utility updates the
SYSTEM.INI file automatically. Similarly, for Windows 95, the
KMM component updates the Registry and the SYSTEM.INI file
automatically. In addition, for all supported Windows versions, the
KMM component shuts down Windows, then brings it back up.

To return to the VTX Configuration utility without implementing the
changes immediately, choose the Return to Utility button. The
changes will take effect the next time you start Windows.

After you register and configure your board and allocate memory for your
applications, the next step depends on whether your board is already
installed:

●

If your board is already installed and you chose to load the VTX
controls automatically into your Visual Basic Toolbox, you can start
using the VTX controls. If you chose not to load the VTX controls at
installation, see “Loading VTX Controls,” on page 1-18 for
instructions.

●

If your board is not already installed, continue to the next section.

Installing Hardware

After you register and configure a Keithley MetraByte board for use with
VTX software, perform the following tasks to install your board:

1. Power down the computer.

2. Set the appropriate hardware switches on the board.

3. Install the board in the computer.

4. Power up the computer.

For assistance with these tasks, see the user’s guide for the board.

1-18 Installing VTX Software

Once you have completed these tasks, you can start using the VTX
controls as long as you loaded them automatically at installation. If you
chose not to load them automatically, load the VTX controls into your
Visual Basic Toolbox; the next section explains how.

Loading VTX Controls

VTX custom controls are extensions to your Visual Basic Toolbox. Use
the VTX controls in the same way you use the standard Visual Basic
Toolbox controls. The VTX custom controls are 16-bit controls and are
compatible with Visual Basic 3.0 and the 16-bit versions of Visual Basic
4.0, Professional and Enterprise Editions.

To remain compatible with Visual Basic 3.0, the VTX control files are
VBX files. The VTX installation program stores the VBX files in your
WINDOWS\SYSTEM directory by default. Table 1-2 lists the VTX
controls by module and their corresponding filenames.

Table 1-2. VTX Control Filenames

Module Control Filename

DAS Base Counter/Timer (CTM) K_CTM.VBX

DAS K_DAS.VBX

Data K_DATA.VBX

Logic K_LOGIC.VBX

Text K_TEXT.VBX

Transfer K_XFER.VBX

Analysis Computation K_COMP.VBX

Frequency K_FREQ.VBX

Statistics K_STAT.VBX

Graph Graph K_GRAPH.VBX

Loading VTX Controls 1-19

If you chose not to load the VTX custom controls automatically into your
Visual Basic Toolbox at installation, you can load them now in either of
two ways:

●

Manually — Add the control files as needed for each project. Use the
manual option if you use Visual Basic for several different types of
applications.

●

Automatically — Add the control files to the AUTOLOAD.MAK
project (Visual Basic 3.0) or the AUTO16LD.VBP project (Visual
Basic 4.0) so that the controls are loaded into the Toolbox every time
you start Visual Basic. Use the automatic option if you use Visual
Basic exclusively for data acquisition applications. If you selected the
option to load the VTX custom controls at installation, the installation
program added them to the AUTOLOAD.MAK or AUTO16LD.VBP
project for you.

Adding a Control to an Application Manually

Before you can use a VTX custom control in an application, you need to
add the control’s VBX file to your project. The steps for adding custom
controls to an application differ between Visual Basic 3.0 and Visual
Basic 4.0. Follow the instructions in the section appropriate to your
version of Visual Basic.

The main difference between loading the controls into the Visual Basic
Toolbox on Windows 3.x and Windows 95 is the way in which you start
Visual Basic:

●

From the Windows 3.x Program Manager, double-click the Visual
Basic icon in the appropriate program group.

●

From the Windows 95 task bar, click Start, then slide the cursor over
Programs, followed by Visual Basic, and then click the appropriate
Visual Basic icon in the Visual Basic menu.

Visual Basic 3.0

To add the VTX controls to your Visual Basic 3.0 Toolbox, perform the
following steps:

1. With Visual Basic 3.0 running, open your project file
(

projectname

.MAK). If you are starting a new project, select New
Project from the File menu.

2. From the Visual Basic File menu, select Add File.

3. From the Add File dialog box, locate the WINDOWS\SYSTEM
directory.

4. From the list of files in the WINDOWS\SYSTEM directory, select the
filename for the VTX control (

control

.VBX) that you want to load.
For example, K_DATA.VBX is the filename of the VTX Data control.
See Table 1-2 on page 1-18 for the complete list of VTX control
filenames.

5. Choose the OK button. The name of the control file appears in the
Project window. In addition, the control icon appears in the Toolbox.

6. Repeat steps 2 through 4 for each VTX control that you want to use in
your application.

7. From the File menu, select Save Project.

Visual Basic 4.0

To add the VTX controls to your Visual Basic 4.0 Toolbox, perform the
following steps:

1. With Visual Basic 4.0 running, open your project file
(

projectname

.VBP). If you are starting a new project, select New
Project from the File menu.

2. From the Tools menu, select Custom Controls or press

CTRL+T

.
When the Custom Controls dialog box appears, you can make
viewing easier by using the Show option to specify that only selected
items are displayed in the Available Controls list box.

3. Choose the Browse button to display the Add Custom Controls dialog
box.

4. From the Add Custom Controls dialog box, locate the
WINDOWS\SYSTEM directory.

Loading VTX Controls 1-21

5. From the list of files in the WINDOWS\SYSTEM directory, select the
filename for the VTX control (

control

.VBX) that you want to load.
For example, K_DATA.VBX is the filename of the VTX Data control.
See Table 1-2 on page 1-18 for the complete list of VTX control
filenames.

After you select the filename, the Custom Controls dialog box
appears with the selected control listed and checked in the Available
Controls list box.

6. Repeat steps 3 through 5 for each additional VTX control that you
want to use in your application.

7. When ready, choose the OK button in the Custom Controls dialog
box. The name of each selected control file appears in the Project
window. In addition, the control icon appears in the Toolbox.

8. From the File menu, select Save Project.

Loading VTX Controls Automatically

If you want the VTX custom controls to be available in the Toolbox each
time you start Visual Basic and you did not select the option to load the
controls at installation, you can load the controls into the
AUTOLOAD.MAK (Visual Basic 3.0) or AUTO16LD.VBP (Visual Basic
4.0) project now. The steps for adding custom controls differ between
Visual Basic 3.0 and Visual Basic 4.0. Follow the instructions in the
section appropriate to your version of Visual Basic.

The main difference between loading the controls into the Visual Basic
Toolbox on Windows 3.x and Windows 95 is the way in which you start
Visual Basic:

● From the Windows 3.x Program Manager, double-click the Visual
Basic icon in the Visual Basic program group.

● From the Windows 95 task bar, click Start, then slide the cursor over
Programs, followed by Visual Basic, and then click the appropriate
Visual Basic icon in the Visual Basic menu.

1-22 Installing VTX Software

Visual Basic 3.0

To add the VTX controls to your AUTOLOAD.MAK project so that the
controls load automatically each time you run Visual Basic, perform the
following steps:

1. From the Visual Basic File menu, select Open Project.

2. From the Open Project dialog box, select AUTOLOAD.MAK from
your Visual Basic root directory (for example, C:\VB).

3. Choose the OK button.

The project window for AUTOLOAD.MAK appears. This window
lists the files that are automatically added to each new application. In
addition, the list contains the names of the VBX files for the controls
that automatically appear in the Toolbox each time you start Visual
Basic.

4. From the File menu, select Add File.

5. From the Add File dialog box, locate the WINDOWS\SYSTEM
directory.

6. From the list of files in the WINDOWS\SYSTEM directory, select the
filename for the VTX control (control.VBX) that you want to load
automatically. For example, K_DATA.VBX is the filename of the
VTX Data control. See Table 1-2 on page 1-18 for the complete list of
VTX control filenames.

7. Choose the OK button. The name of the control file appears in the
AUTOLOAD.MAK project window.

8. Repeat steps 4 through 7 for each VTX control that you want to load
automatically.

9. From the File menu, select Save Project to save the modified
AUTOLOAD.MAK file.

Each time you start Visual Basic, the VTX controls appear in the Toolbox
automatically.

Loading VTX Controls 1-23

Visual Basic 4.0

To add the VTX controls to your AUTO16LD.VBP project so that the
controls load automatically each time you run Visual Basic, perform the
following steps:

1. With Visual Basic 4.0 running, select Open Project from the File
menu.

2. From the Open Project dialog box, select AUTO16LD.VBP from
your Visual Basic root directory (for example, C:\VB).

3. Choose the OK button.

4. From the Tools menu, select Custom Controls or press CTRL+T .
When the Custom Controls dialog box appears, you can make
viewing easier by using the Show option to specify that only selected
items are displayed in the Available Controls list box.

5. Choose the Browse button to display the Add Custom Controls dialog
box.

6. From the Add Custom Controls dialog box, locate the
WINDOWS\SYSTEM directory.

7. From the list of files in the WINDOWS\SYSTEM directory, select the
filename for the VTX control (control.VBX) that you want to load.
For example, K_DATA.VBX is the filename of the VTX Data control.
See Table 1-2 on page 1-18 for the complete list of VTX control
filenames.

After you select the filename, the Custom Controls dialog box
appears with the selected control listed and checked in the Available
Controls list box.

8. Repeat steps 5 through 7 for each additional VTX control that you
want to load automatically.

9. When ready, choose the OK button in the Custom Controls dialog
box. The name of each selected control file appears in the Project
window. In addition, the control icon appears in the Toolbox.

10. From the File menu, select Save Project to save the modified
AUTO16LD.VBP file.

1-24 Installing VTX Software

Creating Your First VTX Application

After installing the VTX software and loading the controls into Visual
Basic, follow the tutorial presented in Chapter 2 to create your first VTX
application.

Assumptions 2-1

2

Creating Your First VTX
Application

In this chapter, you will build a simple application that reads and displays
a single data point by

1. Designing the user interface

2. Setting the properties

3. Connecting the VTX controls

4. Writing code

5. Running the program

Assumptions

This tutorial assumes

●

You have loaded the VTX controls into your Visual Basic Toolbox. If
you did not load the VTX controls at installation, see “Loading VTX
Controls” on page 1-18 for instructions.

●

You are familiar with the Windows environment and know how to use
a mouse.

●

You are familiar with the basic elements of the Visual Basic interface.
If this is your first exposure to Visual Basic, take the time to read
through the first three chapters of the

Visual Basic

Programmer’s
Guide

 before you begin.

2-2 Creating Your First VTX Application

Overview of the Application

When run, the application you will build performs a single-point digital
input operation and then displays the data point. This application
simulates the digital input operation using the VTX DAS-Demo Device,
which is a data acquisition simulation tool supplied with VTX software.
You do not need a DAS board installed in your computer to create and run
this application.

Figure 2-1 shows a design-time view of the application. The VTX DAS
control (DASCtrl1) performs the digital input operation; the VTX Text
control (the white rectangle connected to DASCtrl1) displays the data
point. The line connecting the DAS control to the Text control (called a

connection

) enables the data point to be passed to the Text control for
display. The Start and Stop buttons let users of the application decide
when the operation runs. The Exit button exits the application gracefully.

Figure 2-1. Displaying a Single Data Point - Design-Time View

Design the User Interface 2-3

Figure 2-2 shows a run-time view of this application, with a data point
displayed. The DAS control and its connection to the Text control are
invisible; all other controls are visible.

Figure 2-2. Displaying a Single Data Point - Run-Time View

The following sections explain how to create this application.

Design the User Interface

The Visual Basic environment lets you quickly and easily design user
interfaces for applications. The Visual Basic form is the window in which
you build the user interface. To design the user interface, you place
controls on the form. You can select from a number of standard Visual
Basic controls, including the command button, label, text box, and combo
box controls. The VTX Graph and Text controls are also available for user
interface design.

The user interface you will design in this section uses the standard Visual
Basic command button controls to let users of the application decide
when to start operations and exit the application. It uses the VTX Text
control to display the data point. You will also place the VTX DAS
control on the user interface form, even though the control is not visible
when the application runs.

1

2-4 Creating Your First VTX Application

To design the user interface, follow these steps:

1. Double-click the Microsoft Visual Basic icon in the Keithley VTX
window to start Visual Basic. A new form appears. If Visual Basic is
already running with another project displayed, select New Project
from the File menu to display a new form.

2. Move the cursor over the lower right corner of the form until the
arrow changes to a double arrow.

3. When the cursor changes to a double arrow, press and hold down the
left mouse button, and then move the mouse such that the form is

Form1 is the default title for a new
form. To change the title for a form,
you will use a property called
Caption.

Visual Basic menu bar

VTX Controls in Toolbox:
CTM Logic
Text Graph
Statistics Computation
Frequency Transfer
Data DAS

Indicates that you are in design mode.
This is also referred to as "design time".

Visual Basic Toolbar

Visual
Basic
Toolbox

Design the User Interface 2-5

approximately four inches wide and two inches high. When you set
the properties later, you will specify the form size with more exact
dimensions.

4. Double-click the VTX DAS control icon in the Visual Basic Toolbox
to place the control in the middle of the Visual Basic form.

When you use this method to place a control on a form, the control
always appears in the middle of the form. The text on the DAS
control represents the default control name (Name property) and the
default process (Process property). Most VTX controls display this
information when you place them on a form.

The black squares spaced evenly around the control are sizing
handles. Sizing handles in Visual Basic indicate that a control is
selected.

Because the DAS control is invisible at run time and because you will
later need to draw a line from its right side, you are now going to
move the DAS control off to the left side of the form.

5. With the DAS control still selected, position the cursor over the
control on the form.

Sizing handles
surrounding the
control indicate
that the control is
still selected.

control name

default process

2-6 Creating Your First VTX Application

6. While pressing and holding down the left mouse button, move the
mouse to reposition the DAS control on the left side of the form, as
shown below. Moving an object this way is called "dragging."

7. Double-click the VTX Text control icon to place the control on the
form. Note that, unlike other VTX controls, the Text control does not
display its name and default process. While it is still selected, drag the
Text control to the right of the DAS control, as shown below:

8. Double-click the Visual Basic command button icon three times to
place the three buttons for this application on the form.

Design the User Interface 2-7

The buttons appear on top of one another in the center of the form.
Command3 is on top, as shown below:

9. While it is still selected, drag Command3 to the position shown
below. Then, select and drag Command 2 and Command1 to the
positions shown below:

You have completed designing the user interface for this application.

2-8 Creating Your First VTX Application

Before continuing, save your work by following these steps:

1. From the Visual Basic File menu, select Save Project. The Save File
As dialog box appears.

2. Use the Drives and Directories boxes to locate the drive and directory
in which you want to store the application. Then, in the File Name
field, enter a unique name for the form file. For this example, use
VTXEX1.FRM.

3. Click OK to save the form.

4. When the Save File As dialog box prompts you to save the project
file, use the same prefix as you used for the form file, VTXEX1. The
three-letter extension supplied by Visual Basic depends on your
version of Visual Basic. Visual Basic 3.0 supplies the extension
MAK; the Visual Basic 4.0 extension is VBP.

5. The Save File As dialog box lets you choose to save the files as text.
Leave this box unchecked so that the files are saved as binary. For
more information on storing files as binary or as text, refer to your
Visual Basic documentation.

Now you are ready to set the properties.

Set the Properties 2-9

Set the Properties

In Visual Basic, properties can represent physical attributes of an object.
For example, the Caption property lets you specify the title for a form or
command button. Similarly, the BackColor property lets you specify the
background color for a form or for the VTX Text control. For VTX
controls, properties also represent parameters for the process that you
want the control to perform. For example, the Samples property of the
VTX DAS control lets you specify the number of data points to read from
each channel during an analog input or digital input operation.

After designing the user interface, your next task is to set the properties
for the form and the controls.

Set the Form Properties

You can use many different properties to set up forms in Visual Basic. For
purposes of this tutorial, you will specify the form title (Caption),
dimensions (Height and Width), background color (BackColor), and the
name you will use to reference the form in code (Name).

To set the properties for the form, follow these steps:

1. Click the form to select it and then press

F4

 to display its Properties
window. The illustration below shows a form Properties window as it
appears in Visual Basic 3.0:

2-10 Creating Your First VTX Application

2. From the Properties window, double-click the Caption property.
When the default text is highlighted, enter the following text:

Displaying a Single Data Point

3. Locate and double-click the Height property. In Visual Basic, the
default dimensions for a form are expressed in a special unit called

twips

; there are 1440 twips in an inch.

4. When the default Height setting is highlighted, enter the following
dimension:

3000

This changes the height of the form.

5. Locate and double-click the Width property.

6. When the default setting is highlighted, enter the following
dimension (twips):

6000

This changes the width of the form.

7. Locate and double-click the BackColor property.

8. When the color dialog box appears, click any color you want to use.
The hexadecimal code for the color appears as the current setting and
the background color of the form changes to reflect your choice.

9. Finally, locate and double-click the Name property. When the default
text is highlighted, enter the following text:

frmMain

In Visual Basic, every object has a Name property. You use the text
entered for the Name property to reference an object in code.

Each VTX control has a default Name that includes the control name
(or an abbreviation for the name), the abbreviation "Ctrl", and a
number that represents the instance of the control on the form. For
example, DASCtrl1 is the first DAS control placed on a form.

10. From the File menu, select Save Project. Because you have already
specified filenames, no dialog box appears; Visual Basic saves the
changes.

Now that you have set the form properties, you can begin setting up the
digital input operation and the display of the data point by setting
properties for the VTX controls.

Set the Properties 2-11

Set the DAS Control Properties

The DAS control properties let you specify parameters for a data
acquisition operation. For purposes of this tutorial, you will specify the
device to use for the operation (ProcessSrc property), the operation to
perform (Process property), when the control can start the process
(ArmState property), and the mode in which the operation runs (OpMode
property).

To set the properties for the DAS control, follow these steps:

1. Click the DAS control once to select it and then click the Properties
window to view the properties and their default settings for the DAS
control. (If you previously closed the Properties window, click the
control and press

F4

 to display the Properties window.)

The arrows point to
VTX-specific
properties and their
default settings for the
DAS control. All other
properties are
standard Visual Basic
3.0 properties.

2-12 Creating Your First VTX Application

2. From the Properties window, check the setting of the ProcessSrc
property to ensure that it is Pseudo DAS Device, which is the alias for
the DAS-Demo Device.

If the setting is not Pseudo DAS Device, double-click the ProcessSrc
property until the Pseudo DAS Device setting appears.

Alternatively, click the down arrow next to the highlighted setting to
display the list of available process sources, and then click the Pseudo
DAS Device setting. If you have already registered and configured
boards, the aliases you assigned to the boards appear in this list.

3. From the Properties window, double-click the Process property twice
to change its value from Analog In to Digital In (digital input
operation). Alternatively, double-click the property once and then
click the down arrow next to the highlighted setting to display the list
of available processes.

4. From the Properties window, double-click the ArmState property
until the setting changes to 2 - Hold. This setting prevents the DAS
control from starting until the Start command button is clicked.

5. From the Properties window, click the ellipsis (...) for the (More)
property to display the More Properties window.

Each VTX control has a More Properties window that lets you set up
the selected operation (Process property) based on the selected
process source (ProcessSrc property). For information on the
properties in this window, click a property and press

F1

; the VTX
help for the property appears.

The default property settings for a Digital In process with the
DAS-Demo Device are shown below:

Set the Properties 2-13

For purposes of this tutorial, you will change only the operation mode
(OpMode).

6. From the More Properties window, double-click the OpMode
property to change the value from Synchronous to Single-Point.

Single-Point mode is faster than Synchronous mode when you want
to read a single data point because the operation does not require any
special setup, such as clocking. The changes in the list of properties
available in the More Properties window reflect the smaller number
of parameters to be set for a Single-Point operation, as follows:

7. This example uses digital input channel 0 of the DAS-Demo Device,
which is the default setting of the Channel property. Digital input
channel 0 reads in a ramp of values from 0 to 255. Keep the default
channel setting (0).

8. This example uses the Auto setting of the DataType property, which is
the default setting. In general, the Auto setting means that the VTX
control determines the data type of the incoming data and uses that
data type when sending the data to another VTX control. For this
example, the Auto setting means that the data type of the data point
sent to the Text control is Integer. Keep the default data type setting.

9. The Mask property lets you specify the bits of the digital input (or
digital output) channel that you are interested in for the operation.
This example uses the default setting of the Mask property, All, which
means that you are interested in all the bits of the digital input
channel. Keep the default setting.

10. From the File menu, select Save Project.

When you select Single-Point
mode, the ConvRate and
Samples properties no longer
apply, so they disappear from
the More Properties window.

2-14 Creating Your First VTX Application

Set the Text Control Properties

The Text control displays the data point in a scalar text box. For this
tutorial, most default property settings for the Text control suffice.

To set up the Text control to display the data point, follow these steps:

1. Click the Text control once to select it and then click the Properties
window to view the default property settings for the Text control. (If
you previously closed the Properties window, press

F4

 to display the
Properties window.)

2. From the Properties window, check the Process property setting to
ensure that it is Scalar. If the setting is not Scalar, double-click the
Process property once to change the setting from Grid to Scalar.

The arrows point to
VTX-specific
properties and their
default settings for the
Text control. All other
properties are
standard Visual Basic
3.0 properties.

Set the Properties 2-15

3. Similarly, check the ProcessSrc property setting to ensure that it is
KM_Text. If the setting is not KM_Text, double-click the property
until KM_Text appears.

4. The Text control must wait until it receives the data point from the
DAS control before it can run the Scalar process. Therefore, keep the
default setting of the ArmState property, 0 - Wait For Control
Connection, for the Text control.

5. From the Properties window, click the ellipsis (...) for the (More)
property to display the More Properties window. For information on
these properties, click the property and press

F1

. The VTX help for
the property appears.

6. For this example, the data point will be centered in the display.
However, the property that specifies the horizontal alignment of text
(HAlignment) is ignored unless the MultiLine property setting is
True. Double-click the MultiLine property to change its setting from
False to True.

7. To center the data point value in the Text control display, double-
click the HAlignment property twice, which changes the setting from
0 - Left to 2 - Center.

8. From the File menu, select Save Project.

2-16 Creating Your First VTX Application

Set the Command Button Properties

In Visual Basic, a command button lets users of an application start,
interrupt, or end a process. The button actually appears to be pushed in
when clicked at run time. As with a form, you can use many different
properties to set up command buttons. For purposes of this tutorial, you
will set properties to specify a caption (Caption) and a name to use in
code (Name) for each button; you will disable one of the buttons to
prevent user clicks when the application first starts (Enabled). Follow
these steps to set the properties for the command buttons:

1. Click the first command button (Command1) once to select it and
then click the Properties window to view the properties for a Visual
Basic command button. (If you previously closed the Properties
window, press

F4

 to display the Properties window.)

Set the Properties 2-17

2. From the Properties window, double-click the Caption property.

3. When the default text is highlighted, enter the following text:

Start

The Caption property now reads as follows:

4. Double-click the Name property.

5. When the default text appears in the Settings box, highlight the text
and enter

cmdStart

The Name property now reads as follows:

The Name
property change
affects the name
shown in the
Object box for the
command button.

2-18 Creating Your First VTX Application

6. Click the second command button (Command2) once to select it and
then click the Properties window (or press

F4

 to display the
Properties window).

7. From the Properties window, double-click the Caption property.

8. When the default text is highlighted, enter the following text:

Stop

Set the Properties 2-19

The Caption property now reads as follows:

9. Double-click the Name property.

10. When the default text is highlighted, enter the following text:

cmdStop

The Name property now reads as follows:

The Name
property change
affects the name
shown in the
Object box for the
command button.

2-20 Creating Your First VTX Application

11. Double-click the Enabled property to change its setting from True to
False; the False setting prevents the command button from
responding when a user of the application clicks on the Stop button:

12. Click the third command button (Command3) once to select it, and
then click the Properties window to display its properties. (If you
previously closed the Properties window, press

F4

 to open it.)

13. From the Properties window, double-click the Caption property.

14. When the default text is highlighted, enter the following text:

Exit

Disabling the
button grays it
out when the
application first
starts.

Set the Properties 2-21

The Caption property now reads as follows:

15. Double-click the Name property, and when the default text is
highlighted, enter the following text:

cmdExit

The Name property now reads as follows:

16. From the File menu, select Save Project.

You have now set all the properties required for the form and the controls.
Next, connect the VTX controls to enable them to pass the data point, as
described in the next section.

The Name
property change
affects the name
shown in the
Object box for the
command button.

2-22 Creating Your First VTX Application

Connect the VTX Controls

Your form now shows the command buttons with their new captions, as
follows:

In this section, you will enable the DAS control to pass the data point to
the Text control for display by drawing a line, or

connection

, from the
DAS control to the Text control. Connections between VTX controls
enable the controls to pass data and/or program control, eliminating the
need for code to perform these actions. The control sending the data
and/or program control is the

source

 control; the control receiving data
and/or program control is the

destination

 control. In the VTX
environment, you always draw a connection from a source control to a
destination control.

In this example, the DAS control is the source control and the Text control
is the destination control. Draw the connection by performing these steps:

1. Position the cursor over the small, dark rectangle on the right side of
the DAS control. This rectangle is called the

data output connection
point

 of the DAS control.

data output
connection point

Connect the VTX Controls 2-23

2. When the cursor changes to an arrow with a soldering iron, press and
hold down the left mouse button.

3. When the arrow disappears, drag the soldering iron to the small, dark
rectangle on the left side of the Text control. This rectangle is called
the

data input connection point

.

4. When the arrow reappears with the soldering iron, release the left
mouse button. The connection appears as follows:

5. From the File menu, select Save Project.

That’s all it takes to connect VTX controls. Now, you can write the code,
as described in the next section.

data input
connection point

The connection

2-24 Creating Your First VTX Application

Write the Code

While you could create and run this application without the command
buttons, the buttons and writing simple code for them is included here to
show you how to integrate tasks performed by VTX controls with the
Visual Basic components of a user interface. The VTX Text control is part
of the user interface; however, only a connection is required to integrate it
with the DAS control. The DAS control passes the data point to the Text
control, which displays the data point, without the need for code.
However, to start the DAS control and allow the users of the application
to decide when to start it, this example includes Visual Basic command
buttons.

When a user clicks a command button, the button performs one or more
actions, such as starting the DAS control, by executing code in its Click
event procedure. Code can include assignment statements that set
properties based on user input and/or functions that perform specific
actions for a control. For purposes of this tutorial, you will use
assignment statements. “VTX Functions” on page 4-17 explains the
functions available for VTX controls. The online help for the functions
provides detailed examples of using them.

In any assignment statement you must use the name of the VTX control
and the name of the property. Depending on how many forms you are
using, you may also need to include the name of the form on which you
placed the VTX control. For example, to set the ArmState property of a
DAS control to Ignore Control Connection, use the following assignment
statement:

[VTXForm.]DASCtrl1.ArmState = 1’Ignore Control Connection

In this assignment statement, the text following the apostrophe (

’

) is a
comment that explains the meaning of the property setting (1).

To enable the users of this example application to start the digital input
operation, you will add code to the Click event procedure of the Start
command button. Similarly, to enable users to prevent the VTX controls
from starting again, you will add code to the Click event procedure of the
Stop command button. Finally, to let users exit the application gracefully,
you will add code to the Click event procedure of the Exit command
button.

Write the Code 2-25

Write Code for the Start Button

The Start button lets users of this application decide when to run the
Digital In process of the DAS control. To write the code for this button,
follow these steps:

1. Double-click the command button captioned Start to display the code
window for its Click event procedure.

2. Click the blank line between Sub and End Sub.

3. Enter the following code between the Sub and End Sub statements:

x = frmMain.TextCtrl1.ClearInputs 'Clear data from Text control
frmMain.TextCtrl1.ArmState = 0 'Wait For Control Connection
frmMain.DASCtrl1.ArmState = 1 'Ignore Control Connection
frmMain.cmdStart.Enabled = False 'Prevent additional mouse clicks
frmMain.cmdStop.Enabled = True 'Enable Stop button
frmMain.cmdStop.SetFocus 'Make the Stop button the default

As you enter the code, note that Visual Basic automatically adds color
coding for comments (green) and reserved words such as SetFocus,
True, or False (blue).

You will enter code between the Sub and End Sub statements.
Note that if you are using Visual Basic 4.0, "Sub" is preceded by "Private’.

The Object field shows the Name
of the selected control.

The title bar of the
code window shows
the filename for the
form on which the
control resides.

The Procedure field shows the
name of the event procedure.

2-26 Creating Your First VTX Application

The first line of code clears any existing data from the data input
connection point of the Text control by reading the ClearInputs
property of the Text control.

The second line prepares the Text control to run once the DAS control
has sent the data and control. The reason this line is needed will
become clear when you enter the code for the Stop command button.

The third line starts the DAS control by setting its ArmState property
to 1 - Ignore Control Connection. This setting lets the DAS control
start immediately because the control has no data input connections.

The fourth line prevents the user of the application from clicking the
Start button again while the VTX controls are running. If you omit
this line of code, it is possible for multiple mouse clicks to generate
an error.

The fifth line enables the Stop button, which you disabled when
setting the properties for the command buttons.

The last line of the code uses the Visual Basic SetFocus method to
make the Stop button the default button. In Visual Basic, this means
that the button is highlighted (a dark border) and can receive a mouse
click.

4. Check the lines of code in your window against the lines of code
shown below to ensure that the line breaks are correct.

5. From the File menu in Visual Basic, select Save Project.

Write the Code 2-27

Write Code for the Stop Button

The Stop button lets users of this application prevent the DAS and Text
control processes from starting again until the Start button is clicked. To
add the code for the Stop button, follow these steps:

1. From the code window in Visual Basic, click the down arrow next to
the Object field. Click cmdStop to display the Click event procedure
for the Stop command button. If you previously closed the code
window, double-click the Stop command button on the form to
display the code window.

2. Click the blank line between Sub and End Sub.

3. Enter the following code between the Sub and End Sub statements:

frmMain.TextCtrl1.ArmState = 2 'Put Text control on hold
frmMain.DASCtrl1.ArmState = 2 'Put DAS control on hold
frmMain.cmdStop.Enabled = False 'Disable the Stop button
frmMain.cmdStart.Enabled = True 'Enable the Start button
frmMain.cmdStart.SetFocus 'Make the Start button the default

The first two lines of code put the Text and DAS controls on hold
(ArmState set to 2 - Hold), which prevents them from running again
until the Start button is clicked.

1. Click this down arrow
 to display the list of
 objects on the form.

2. Click cmdStop to select it and
 display its Click event procedure.

2-28 Creating Your First VTX Application

4. Check the lines of code against the lines shown below to ensure that
the line breaks are correct.

5. From the File menu in Visual Basic, select Save Project.

Next, you will enter the code for the Exit button (only one line).

Write Code for the Exit Button

The Exit button lets users of this application exit the program with all
processes stopped. The standard Visual Basic End statement is used for
this purpose.

To add the code for the Exit button, follow these steps:

1. From the Visual Basic code window, click the down arrow next to the
Object field to display the list of objects on the form.

2. Click cmdExit to select the button and display its Click event
procedure.

If you previously closed the code window, double-click the command
button captioned Exit on the form to display the code window.

Write the Code 2-29

3. In the code window, click the line between the Sub and End Sub
statements.

4. Enter the following statement:

End 'Stop all processes and exit the program

5. From the File menu in Visual Basic, select Save Project.

6. Double-click the icon in the top left corner of the code window to
close it.

That’s all the code required for this application. Now you can run the
application, as described in the next section.

1. Click this down arrow
 to display the list of
 objects on the form.

2. Click cmdExit to select it and
 display its Click event procedure

Double-click here
to close the code
window.

2-30 Creating Your First VTX Application

Run the Application

To run this application, follow these steps:

1. Select Start from the Run menu.

The run-time view of the form appears.

2. To read the data point, click the Start button on the form. After the
DAS control reads the data point, the Text control displays the value.

3. To re-activate the Start button, click the Stop button.

4. Repeat steps 2 and 3 to see the different data points that the
DAS-Demo Device generates for the Digital In process.

5. To exit the program, click the Exit button.

That’s all that’s required to build a simple application with Visual Basic
and VTX software.

1

What’s Next 2-31

What’s Next

Now that you’ve experimented with a simple VTX application, refer to
Chapter 3, "VTX System Overview," for more details on how the VTX
software works.

Chapter 4, "Building an Application with VTX," provides additional
detail on creating applications with VTX controls and Visual Basic. You
may want to refer to the chapter as you build your own, more complex
applications.

For assistance while you work in Visual Basic, you can select a VTX
control and press

F1

 to display the VTX help for the VTX control. You
can also select a VTX property in the Properties window or More
Properties window and press F1 to display help for the property
(context-sensitive help). For properties that you can use in code, each
property help topic provides a code example. Context-sensitive help is
also available for VTX events; to access the help, select the event in the
code window and press F1. For VTX functions, use the Search button in
the button bar at the top of the help window.

You may also want to refer to the example programs that accompany your
VTX software. The example programs fall into two categories:

● Building blocks — These simple applications use two or three VTX
controls to perform simple tasks, such as graphing analog input data
in a line chart. These examples use Visual Basic command buttons to
let users of the application decide when to run the tasks.

● Complex examples — The more complex examples use a
combination of three or more VTX controls with standard Visual
Basic controls to illustrate how to design a user interface that lets
users of the application set the parameters for operations that the
VTX controls perform, such as an analog input operation.

The complex example programs have corresponding icons in the Keithley
VTX program window; you can double-click the icons to open the
projects and Visual Basic. The building block applications do not have
icons in the window. You can access all VTX example programs by using
the Open Project option in the File menu of Visual Basic. By default, the
project files for the example programs are located in the

2-32 Creating Your First VTX Application

VTX\EXAMPLES directory. You can copy and paste code from these
programs if the code suits your needs.

For brief descriptions of the building block example programs, click the
Examples help icon (yellow question mark) in the Keithley VTX program
window. This help file and the example topics are also accessible from the
main menu of the VTX system overview help.

You can find more code examples in the online help. The help topic for
each VTX control property or function provides a code example. You can
copy the code from the Examples window and paste it into your Visual
Basic application.

The VTX Environment 3-1

3

Understanding the VTX System

This chapter presents the basic concepts of the VTX system and describes
the software tools that the system provides. You have already seen some
of these concepts at work in the tutorial in Chapter 2. Before building
complex applications, ensure that you understand all of the concepts
presented here.

Note:

Depending on the VTX modules you purchased, the references to
the Computation, Frequency, Statistics, and Graph controls may not apply

to your VTX system.

The VTX Environment

VTX is a system of software tools that enables you to build complete data
acquisition applications through Visual Basic for Windows. These tools
include an

integrated

 set of custom controls; when placed on a Visual
Basic form, VTX controls can pass data and program control among one
another without requiring any code. To enable the controls to
communicate in this way, the VTX software tools also include the ability
to draw connections (or

wires

) between VTX controls.

The integration of the VTX controls creates the VTX

environment

, where
you can develop applications according to your data acquisition needs.
You can quickly put together simple applications using VTX controls and
connections only. For example, you can acquire temperature and pressure
data, and display or graph that data immediately; your development can
remain entirely within the VTX environment.

3-2 Understanding the VTX System

For complex applications, the VTX environment is open and completely
compatible with Visual Basic. You can easily transfer data and program
control to and from VTX, using standard Visual Basic programming
techniques. Complex applications sometimes require a custom user
interface that is supported by data acquisition, error checking, analysis,
and graphing tasks.

You can develop the supporting tasks (data acquisition, error checking,
analysis) for a complex application within the VTX environment and then
use a combination of the following controls to develop the user interface:

●

VTX Graph control

●

VTX Text control

●

Standard Visual Basic controls, such as the command button

●

Third-party custom controls developed for use with Visual Basic

To integrate the tasks in the VTX environment with the user interface, you
can set properties and pass program control in the appropriate code
modules of the standard Visual Basic and VTX controls. As illustrated in
the tutorial in Chapter 2, you can use the Click event procedure of a
command button to start an operation that you have configured with a
VTX control.

To pass data between the VTX environment and your instruments, you
can use the VTX DAS and CTM controls with your Keithley MetraByte
data acquisition hardware. The DAS and CTM controls open the VTX
environment to your test and measurement hardware by communicating
with your data acquisition hardware. See the online help for details on
using the DAS and CTM controls.

To pass data between the VTX environment and the Visual Basic
environment, you can use the VTX Transfer control. The Transfer control
opens the VTX environment for passing data between VTX and Visual
Basic arrays, binary DOS files, and Windows spreadsheets. See the online
help for details on using the Transfer control.

Processes and Process Sources 3-3

Processes and Process Sources

VTX controls can perform a variety of operations, including data
acquisition, line chart, strip chart, data display, computation, conversion,
statistical, Boolean logic, filtering, and Fast Fourier Transform
operations. In the VTX environment, these operations are called

processes

. The hardware and software resources installed in your
computer that perform these operations are called

process sources

.

For example, the DAS control provides four processes that correspond to
the following types of data acquisition operations:

●

Analog input operations (Analog In process)

●

Analog output operations (Analog Out process)

●

Digital input operations (Digital In process)

●

Digital output operations (Digital Out process)

Similarly, the CTM control provides three processes that correspond to
the types of operations that counter/timer boards can perform:

●

Counter/Timer process, for running event counting, frequency
measurement, and pulse generation operations

●

Digital In and Digital Out processes for running single-point digital
input and single-point digital output operations

The process sources for the DAS and CTM controls include the Keithley
MetraByte hardware and software installed in your computer, such as a
DAS-1802HC board and its related software driver or a CTM-05/A board
and its related software driver.

3-4 Understanding the VTX System

Table 3-1 summarizes by module the VTX controls, their processes, and
process sources.

Table 3-1. VTX Controls, Processes, and Process Sources

VTX Module VTX Control Processes Process Sources

1

DAS Base

Counter/Timer
(CTM)

Counter/Timer
Digital In
Digital Out

Counter/Timer hardware
from Keithley MetraByte

2

DAS Analog In
Analog Out
Digital In
Digital Out

Pseudo DAS Device (alias
for the DAS-Demo
Device, useful for
simulating data
acquisition operations)

DAS hardware

2

 and
related software drivers

Data Selection
Switch
Transpose

KM_Data

Logic AND
OR

KM_Logic

Text Grid
Scalar

KM_Text

Transfer DDE
Disk
VB Array

KM_Xfer

Analysis

Computation Arithmetic
Comparison
Conversion
Curve Fit
Trig
Wave Gen

KM_Comp

Frequency FFT
Filtering
Inverse FFT
Windowing

KM_Freq

Overview of VTX Tools 3-5

While the Computation control provides a Conversion process that can
convert analog input data into engineering units that are useful to your
application, the DAS control can also convert analog input data into
engineering units. The Engineering Units window of the VTX
Configuration utility lets you set up conversions that you want the DAS
control to perform. See “Specifying Engineering Units” on page 1-12 for
details on using this window.

The next section describes the controls and other VTX software tools in
more detail. For complete details on the VTX controls, see the online
help.

Overview of VTX Tools

VTX software tools consist of the VTX Configuration utility, a set of
integrated custom controls, and the ability to draw connections (wires)
between controls. This section describes these tools based on the module
in which the tools are packaged. For complete details on these tools, see
the online help.

Analysis

(continued)

Statistics Max
Mean
Min
Std Deviation
Variance

KM_Stat

Graph

Graph Bar Chart
Line Chart
Strip Chart

KM_Graph

Notes

1

The KM_xxx process sources are the software modules provided by Keithley MetraByte with
the VTX system.

2

Consult Keithley MetraByte for a list of supported hardware.

Table 3-1. VTX Controls, Processes, and Process Sources (cont.)

VTX Module VTX Control Processes Process Sources

1

3-6 Understanding the VTX System

The

DAS Base Module

 provides the following software tools:

●

CTM Control — Lets you set up and run counter/timer operations
such as event counting, frequency measurement, and pulse generation
with counter/timer hardware such as the Keithley MetraByte
CTM-05/A and CTM-10 boards. The CTM control lets you
synchronize the start of one to five counter/timer operations. In
addition, the CTM control supports single-point digital input and
digital output operations.

●

DAS Control — Lets you set up and run data acquisition operations
(analog input, analog output, digital input, and digital output). For
analog input operations, the DAS control can also convert analog
input data into engineering units that are useful to your application.
For digital I/O operations, the DAS control also provides a bit mask
that lets you control the valid numerical range and interpretation of
digital input data and the interpretation of digital output data.

●

Data Control — Lets you manipulate data within the VTX
environment. You can select subsets of data or transpose data sets and
data elements. The Switch process lets you route data within the VTX
environment from one source to multiple destinations or from
multiple sources to one destination.

●

Logic Control — Lets you conduct Boolean AND and OR operations
based on program control events in the VTX environment. The OR
process sends out the number of the input connection point that
caused the Logic control to run; you can use that information with
other VTX controls.

●

Text Control — Lets you display, create, and modify data within the
VTX environment. As you have seen in Chapter 2, the Text control
Scalar process provides a text-box-like display for single data points.
The Grid process provides a spreadsheet-like display for data sets
with one or more data elements.

●

Transfer Control— Lets you move data between the VTX
environment and Visual Basic arrays, binary DOS files, or Windows
spreadsheets.

●

Connections— Enable VTX controls to pass program control and
data among one another. See the section “Program Control in the
VTX Environment” on page 3-16 and the online help for more
information.

Overview of VTX Tools 3-7

●

VTX Configuration Utility — Provides the following configuration
windows:

– DAS Hardware - Lets you register and configure the Keithley
MetraByte hardware you want to use with the DAS and CTM
controls. Also for specifying the equations or sensors
(engineering units) to use in converting data during analog input
operations. See “Preparing to Use Boards with VTX Software”
on page 1-6 or the online help for instructions on using this
utility.

– Keithley Memory Manager - Lets you allocate system memory
when using the VTX system to build data acquisition
applications. See “Reserving Memory” on page 1-15 or the
online help for details.

– VTX Options - Lets you specify options for the VTX
programming environment. See “Enabling and Disabling VTX
Options” on page 4-41 or the online help for instructions.

●

DAS-Demo Device— Lets you simulate data acquisition operations
for the DAS control. You can build an application without installing a
DAS board and simulate the data acquisition part of the application
with the DAS-Demo Device. In the Properties window, the
DAS-Demo Device is listed by its alias, Pseudo DAS Device.

The

Analysis

 Module provides the following additional custom controls:

●

Computation control - For generating waveforms and performing a
variety of mathematical operations on data passed from other VTX
controls, including arithmetic, comparison, conversion, curve fitting,
trigonometry, and waveform generation.

●

Frequency control - For performing Fast Fourier Transform (FFT),
Inverse FFT, filtering, and windowing operations on data passed from
other VTX controls.

●

Statistics control - For calculating maximum, minimum, mean,
standard deviation, and variance values on data passed from other
VTX controls.

The

Graph Module

 provides the Graph control. The Graph control lets
you create line or scatter charts, strip charts, and bar charts using data
passed from other VTX controls.

3-8 Understanding the VTX System

Properties of VTX Controls

In using the tutorial in Chapter 2, you saw that VTX controls have two
sets of properties: those in the Properties window and those in the More
Properties window. The properties available in the Properties window are
common to all VTX controls and include some standard Visual Basic
properties; these properties are referred to as

control

 properties. The
properties available in the More Properties window are specific to the
operation as specified with the VTX ProcessSrc (process source) and
Process properties in the Properties window; these properties are referred
to as

operation-specific

 properties. The following subsections describe
these two sets of properties in more detail.

Control Properties

Every VTX control has the same set of

control

 properties that appear in
the Properties window. Control properties include standard Visual Basic
properties such as BackColor, Caption, ForeColor, Name, TabIndex,
TabStop, Tag, and Top, as well as properties specific to the VTX controls.
VTX controls have some additional control properties that are available
only at run time.

Figure 3-1 shows an example of the Properties window for the DAS
control as it appears in Visual Basic 3.0; in Visual Basic 4.0, the window
does not have the Settings Box at the top. In Figure 3-1, the arrows point
to properties that are specific to VTX controls. All other properties are
standard Visual Basic properties that appear for the VTX controls.

Note:

Certain standard Visual Basic properties, such as BackColor,
ForeColor, TabIndex, and TabStop, determine the appearance or operation
of a control at run time. The VTX Text control uses these properties at run

time. However, all other VTX controls ignore these properties.

Properties of VTX Controls 3-9

Figure 3-1. Properties Window for the DAS Control (Visual Basic 3.0)

Settings box

Object box

The arrows point to
VTX-specific
properties and their
default settings. All
other properties are
standard Visual Basic
properties.

3-10 Understanding the VTX System

Table 3-2 briefly describes the control properties that are common to all
VTX controls, including those that are available only at run time (and
therefore do not appear in the Properties window). For complete details
on these properties, see the online help.

Table 3-2. Properties Common to all VTX Controls

Availability

1

Notes

1

R = The property is read-only.
R/W = The property is read and write.
N/A = The property is not available.

Property Description
Design
TIme

Run
Time

(More) Displays the More Properties window. R N/A

About Displays a dialog box containing information about the
VTX control.

R N/A

ArmState Specifies when a control runs its configured process. R/W R/W

ClearInputs Clears any control and data input connections to the
control. Returns a True if connections were cleared or
False if no connections were cleared.

N/A R

CtlConnection Specifies what happens when the VTX control receives
control at the top control input connection point.

R/W R

CtlVersion Returns the current revision level of the control. R R

Halt Stops a VTX control. Returns the status of the control
immediately before the Halt (active or inactive).

N/A R

hCtl Returns the instance of the control. Use this property with
VTX functions.

N/A R

Process Specifies the operation that the control performs. R/W R

ProcessSrc Specifies the hardware or software resource installed in
the computer that performs the selected process.

R/W R

Status Returns the current status of the control (active or
inactive).

N/A R

Properties of VTX Controls 3-11

Operation-Specific Properties

Operation-specific properties of VTX controls appear in the More
Properties window. When you first access the More Properties window,
the set of properties available is based on the choices you made for the
ProcessSrc and Process properties.

Figure 3-2 shows the More Properties window for the DAS control as it
appears when a DAS-1801ST board is the selected process source and an
Analog In process is the selected process. Note that the More Properties
window resembles the Visual Basic 3.0 Properties window in appearance
whether you are using Visual Basic 3.0 or Visual 4.0. In addition, you use
the More Properties window in the same ways you use the Visual Basic
3.0 Properties window.

Figure 3-2. More Properties Window for the DAS Control

The list of properties and the settings available for the properties in the
More Properties window change based on the process source and process
selected in the Properties window. To see how changes to the ProcessSrc
property affects the More Properties window, compare Figure 3-2 with
Figure 3-3 on page 3-12.

Settings Box

List of VTX
operation-specific
properties and their
default settings

3-12 Understanding the VTX System

Figure 3-3. Effects of Changing the Process Source on the More Properties Window

In Figure 3-2, the properties listed and their available settings are based
on the selection of the DAS-1801ST board as the process source and
Analog In as the process. In Figure 3-4, the ProcessSrc property has been
changed to Pseudo DAS Device (the DAS-Demo Device) and the Process
property remains set to Analog In. The change in the process source
reduces the set of properties available for the Analog In process because
not all properties are available for all process sources or for all processes.
For example, the AboutTrig property is no longer available. In addition,
the OpMode property default setting is Synchronous instead of DMA.

Similarly, suppose you change the Process property setting to Digital Out
for either process source. The DataConvType and DataType properties
would disappear from the More Properties window because they do not
apply to a Digital Out process.

The choices you make for the properties in the More Properties window
can also affect the availability of properties. In Figure 3-2, the list of More
Properties for an Analog In process on a DAS-1801ST board includes the
TrigSrc property. However, the TrigChan, TrigHyst, TrigLevel, and
TrigPol properties are not available because the default value for TrigSrc
is Internal.

The list of properties
available for the same
process is significantly
shorter for the new
process source.

The default setting for
the OpMode property
has changed for the
new process source.

Properties of VTX Controls 3-13

When you change the setting of TrigSrc to Analog, the TrigChan,
TrigHyst, TrigLevel, and TrigPol properties become available, as shown
in Figure 3-4. Note that because the DAS-1800 Series boards support
edge sensitivity only, the TrigSensitivity property is not available; edge
sensitivity is assumed.

Figure 3-4. Effects of Changing Property Values in the More Properties Window

Notes:

If a property does not appear in the More Properties window, that
property may not be supported by the process source or process. Use the
Select Board and Board Specifics buttons in the online help for the DAS
control to determine which properties are available for your board.

At design time, the settings selected for properties in the More Properties
window of the DAS control are retained when you change the process
source,

as long as the settings are valid for the new process source

. If the
settings are not valid for the new process source, the DAS control resets
the properties to their default settings.

You cannot change a process source at run time for any VTX control.

These four
properties
become
available
when
TrigSrc is
set to
Analog

3-14 Understanding the VTX System

Source and Destination Controls

Each VTX control can perform different types of processes. However, a
VTX control can perform only one process at a time. When its process
completes, the control can pass the resulting data and/or program control
to another VTX control.

Because the VTX controls pass data and/or program control, the VTX
controls serve as

source

 and

destination

 controls in the VTX environment.
The control that sends data and/or program control is the source control.
The control that receives data and/or program control is the destination
control. For example, in Figure 3-5, DASCtrl1 is the source control and
XferCtrl1 is the destination control.

Figure 3-5. Source and Destination Controls

A source control can send program control and data to one or more
destination controls. Similarly, a destination control can receive program
control and data from one or more source controls. Each VTX control can
serve as both source and destination.

Source control Destination control

Source and Destination Controls 3-15

For example, in Figure 3-6, three DAS controls are source controls for
DataCtrl1. DataCtrl1 is both a destination control (for the DAS controls)
and a source control for XferCtrl1. XferCtrl1 is a destination control for
DataCtrl1.

Figure 3-6. Multiple Source Controls to a Single Destination Control

The following subsections describe how program control and data are
handled in the VTX environment.

Source controls

Destination controlDestination for
DAS controls
and source for
Transfer control

3-16 Understanding the VTX System

Program Control in the VTX Environment

Setting up program control for an application generally refers to
specifying the order in which the tasks in an application are performed. In
the VTX environment, each VTX process is a task that the application
performs, and program control is referred to as simply

control

. To specify
the order in which tasks are performed in your VTX application, you set
up the VTX controls to pass

control

 from a source control to a destination
control.

In the VTX environment,

control

 tells the destination control to start its
configured process. Depending on the requirements of the application,
VTX controls can pass control only or they can pass control with data.
Note that VTX controls always pass control when passing data. Control
passes from a source control to a destination control through a control

connection

. In the VTX environment, a connection is a line (or

wire

) that
you draw between the controls. See “Connections” on page 3-20 for more
information.

The VTX Logic control provides an additional way to specify the order of
tasks of an application. With the Logic control, you can perform Boolean
operations (OR and AND) based on control passed from source controls
to the Logic control. For example, based on the completion of one of
three DAS processes (OR), you can send data to a VTX Graph control for
plotting or to a VTX Text control for display in a grid. The Logic control
can determine which of the three DAS processes completed; you might
want to use that information to display a title for the graph or grid.

The VTX Data control provides an additional way to specify the flow of
data in an application. Using the Switch process of the Data control, you
can route data from one source control to multiple destination controls or
from multiple source controls to one destination control.

Data in the VTX Environment

In the VTX environment, you can specify the flow of data between VTX
controls. Certain VTX processes let you pass data into and out from the
VTX environment. This section describes the structure of data in the VTX
environment as well as moving data within, to, and from the VTX
environment.

Source and Destination Controls 3-17

Defining the Structure of Data in the VTX Environment

The following terms describe data as it exists in the VTX environment:

●

Data element - a single unit of data, such as a voltage value or a pH
value

●

Data set - a collection of data elements, such as a set of voltages read
at one-second intervals

●

Data or data group - a collection of data sets, such as a data set of
voltages and another data set of pH values

A data group represented as a Visual Basic array takes the form

(number
of data elements

,

number of data sets)

. The data group can consist of

●

A

single

 data set with a

single

 element. For example, a single sample
(data point) read from a specified channel during a single-point
analog input operation creates a single data set (channel) that contains
a single element (the sample read).

●

A single data set containing multiple elements. For example, the
samples from one analog input channel form a single data set
(channel) with multiple elements (samples).

● Multiple data sets, where each data set contains one element. For
example, you use the Maximum process of the Statistics control to
determine the highest reading for each of four analog input channels.
The result of the process consists of four data sets (channels), each
containing one element (the highest reading).

● Multiple data sets, where each data set contains multiple elements and
all have the same number of elements. For example, 1000 samples
read from four analog input channels result in four data sets
(channels), each containing 1000 elements (samples).

Figure 3-7 shows an example of a data group that contains four data sets;
each data set contains two data elements.

Figure 3-7. Example of a Data Group in the VTX Environment

Data Group

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Data Element 1 Data Element 1 Data Element 1 Data Element 1

Data Element 2 Data Element 2 Data Element 2 Data Element 2

3-18 Understanding the VTX System

Moving Data between VTX Controls

VTX controls send and receive data within the VTX environment in the
combinations of data sets and data elements (single set, single element;
single set, multiple elements, and multiple sets, multiple elements). VTX
source controls can send only one data group at a time. However, source
controls can send the same data group to multiple destination controls;
similarly, VTX destination controls can receive data groups from multiple
source controls.

When a VTX control receives data groups from multiple sources, that
control merges the data sets from all the data groups into a single data
group. This operation is called data set appending. Because the VTX
control appends data sets, each data set in all the incoming data groups
must have the same number of data elements.

Note, however, that the Line Chart process of the VTX Graph control can
accept data groups whose data sets contain different numbers of elements.
For example, suppose you want to acquire analog input data from two
different instruments and graph the data from both instruments in the
same line chart. This application requires two DAS controls (one for each
analog input operation) and one Graph control. At run time, one analog
input operation acquires 100 samples from two channels; the other
operation acquires 200 samples from two channels. The data group
resulting from the first analog input operation contains two data sets (two
channels), each with 100 data elements (samples). The data group
resulting from the second analog input operation contains two data sets
(two channels), each with 200 data elements (samples). You can send
these two data groups to the Graph control for display in the same line
chart because the Line Chart process can accept data groups whose data
sets contain different numbers of elements.

The Text control lets you create, display, and modify data in scalar,
vector, and matrix format within the VTX environment. In addition, any
VTX control that produces output data can pass that data in the
appropriate format (scalar, vector, or matrix) within the VTX
environment.

However, if you pass data out from the VTX environment to a Visual
Basic array with the Transfer control, you must always declare a
two-dimensional Visual Basic array to receive the data, whether the data
is a single value (scalar), a single data set with multiple values, multiple

Source and Destination Controls 3-19

data sets with one value, or multiple data sets with multiple values.
Declare the array using the format (number of data elements, number of
data sets).

For example, to pass a data group that contains 100 samples from each of
five analog input channels, declare the Visual Basic array using Option
Base (0), as follows:

Dim AnalogInData (99, 4) As Double

Moving Data to and from the VTX Environment

The DAS, CTM, and Transfer controls can pass data to and from the VTX
environment as well as to other VTX controls. Figure 3-8 illustrates this
concept using the DAS and Transfer controls.

Figure 3-8. Example of Moving Data to and from the VTX Environment

VTX Environment

Data is passed to a Visual
Basic array, binary file, or
Windows spreadsheet

DAS board

Instruments
1. The DAS board reads

data from the
instruments and
passes it into the VTX
environment through
the VTX DAS control
(Analog In process).

3. The VTX Transfer control maps
data as appropriate for the
destination and then passes the
data out from the VTX
environment.

2. Within the VTX
environment, the
DAS control maps
channels to data
sets and samples
to data elements
and, in this
example, passes
the data to the
Transfer control.

3-20 Understanding the VTX System

In Figure 3-8, the DAS control brings data from the DAS board into the
VTX environment using an Analog In process; the Transfer control passes
the data out from the VTX environment. The opposite is also possible: the
Transfer control can bring data into the VTX environment and the DAS
control can pass data out from the VTX environment to the DAS board
(through an Analog Out or Digital Out process).

Before transferring data into the VTX environment, the DAS, Transfer,
and CTM controls map the data to data element and data set
combinations. For example, the DAS control maps channels to data sets
and samples to data elements. Before transferring data out from the VTX
environment, the DAS, Transfer, and CTM controls map the data element
and data set combinations as appropriate to the destination. For example,
the DAS control treats the data elements in each data set as the samples to
write from the specified output channels.

Other data processing within each VTX control depends on the process
you select and on the choices you make for the properties associated with
the selected process. See the online help for each VTX control to learn
more about data in the VTX environment.

Connections

A connection in the VTX environment is a line that you draw from a VTX
source control to a VTX destination control. When you draw connections,
you enable the VTX controls to pass data and/or start the next process
automatically, without code.

The tutorial in Chapter 2 showed you how to draw a connection between
two VTX controls on the same form. You can use the same technique to
draw connections between VTX controls that are on different forms
(called interform connections) or to draw multiple connections to or from
a VTX control. For example, if you want to pass data to more than one
VTX control, you can draw multiple connections from the same control.
Or, if you want a VTX process to use data from multiple sources, you can
make multiple connections to the same VTX control. When making
multiple connections to the same control, you can specify the order in
which the connections are processed and thereby the order in which the
data is processed.

Connections 3-21

Before using these features, however, you should understand the types of
connections and connection points available in the VTX environment.
The following subsections describe the connection types, connection
points, and interform connections. See the section “Connecting VTX
Controls” beginning on page 4-6 for step-by-step instructions on using
the additional features.

Connection Types

Two types of connections exist:

● Data - Notifies a destination control that it may begin its configured
process and that data is available for use in that process.

● Control - Notifies a destination control that it may begin its
configured process.

The style of the line (wire) that represents the connection shows you
whether it is a data connection (solid line) or a control connection (dashed
line). When selected, connections change color (from black to blue) and
are surrounded by a grey shadow. Figure 3-9 shows the two types of
connections. The following two connections in Figure 3-9 are selected:

● The control connection between XferCtrl1 and XferCtrl2

● The data connection between XferCtrl2 and DAS Ctrl2

Figure 3-9. Types of Connections

Data
connection
(not selected)

Control
connection
(selected)

Connection
points

Sizing handles

3-22 Understanding the VTX System

Each data connection passes a single data group from a source VTX
control to a destination VTX control. Note that because the data
connection also carries control, you do not draw both a data connection
and a control connection between a source control and a destination
control. For example, in Figure 3-9, the data connection between the DAS
control (DASCtrl1) and the first Transfer control (XferCtrl1) passes
control as well as data. The VTX software does not allow you to draw a
control connection between these two controls.

Connection Points

In Figure 3-9, the connections are drawn between rectangles attached to
the left and right sides of the VTX controls. These rectangles are called
connection points. The connection points on the left side of a control are
the input connection points and those on the right are the output
connection points.

Data and control always pass from an output connection point to an input
connection point, never the reverse. Therefore, when drawing
connections, always start at the output connection point and drag the
cursor to the input connection point.

In Figure 3-9, the second Transfer control (XferCtrl2) is selected to
illustrate the slight difference between the connection points of a VTX
control and the sizing handles of a selected control. The sizing handles
around XferCtrl2 in Figure 3-9 overlap its input and output connection
points. Note that connection points are always visible at design time;
sizing handles appear only when you select the control.

Connection points and connections enable data and/or program control to
pass from one VTX control to another. Thus, input and output connection
points are also called by the two connection type labels, data and control.
Each VTX control has two or more of the following types of connection
points:

● data input

● control input

● data output

● control output

Connections 3-23

Figure 3-10 illustrates the control input, data input, and data output
connection points as they appear when you select the Arithmetic process
of the Computation control.

Figure 3-10. Examples of Connection Points

Every VTX control has at least one control input connection point and at
least one control or data output connection point when you drop it on the
form. Depending on the process and property selections you make, a
control can have additional input and/or output connection points.

The top control input connection point of every VTX control has a
property associated with it, called CtlConnection. The two settings of this
property let you specify what happens when control input arrives at this
connection point:

● Control Only — The control starts its configured process as soon as
the conditions of all data input connections are met.

● Clear + Control — The control clears all of its input connections and
connection points in preparation for the process and then starts its
configured process as soon as the conditions of all data input
connections are met.

Data output
connection pointData input

connection
points

Control input
connection point

3-24 Understanding the VTX System

To distinguish it from other control connection points, the outline of the
top control input connection point is darker than the outline of any other
control connection points. Figure 3-11 illustrates this difference using the
VTX Logic control, which is set up to run an OR process. For the Logic
control, the additional control input connection points are referred to as
logic input connection points.

Figure 3-11. VTX Logic Control Connection Points

The Data, CTM, and Computation controls can each have multiple output
connection points:

● The Data control has only data output connection points. When you
select the Switch process in One-to-Many mode, the Data control has
multiple data output connection points.

● The CTM control can have a combination of data and control output
connection points. The number and type of output connection points
depend on the number and type of counter/timer operations you
select.

● The Computation control can also have a combination of data and
control output connection points. The number and type of output
connection points depend on the process selected; the Comparison
and Curve Fit processes have multiple output connection points.

Figure 3-12 shows the Data, CTM, and Computation controls with
multiple output connection points.

Data Output
Connection PointOther Control

(Logic) Input
Connection Points

Top Control Input
Connection Point

Connections 3-25

Figure 3-12. Data, CTM, and Computation Control Output Connection Points

Multiple Connections

Connection points can have multiple connections, which are either
control or data, depending on the control and the process selected. When
you select a destination control that has multiple connections to one of its
input connection points, numbers appear on the connections near the
source control. The numbers indicate the order in which you drew the
connections and, more importantly, the order in which the destination
control processes the data and/or control connections.

Figure 3-13 shows three data connections to the data input connection
point on DataCtrl1. The Data control is selected so that you can see the
order in which the Data control will process the connections. A single
data connection exists between DataCtrl1 and XferCtrl1. In this example,
the DAS controls bring data in from instruments, and the Data control

For this CTM control, the first four
operations are EventCount (data
output connection points) and the
fifth operation is Pulse Gen (control
output connection point).

With the Comparison process
selected, the Computation
control has one control output
connection point and two data
output connection points.

The maximum
number of
outputs for the
Switch process
of the Data
control in
One-to-Many
mode is 8, as
shown here. The
number of inputs
depends on the
source of the
data.

With the Curve Fit process selected, the Computation
control has two data output connection points.

3-26 Understanding the VTX System

selects subsets of the data for the Transfer control to send out from the
VTX environment to a spreadsheet. Note that the Data and Transfer
controls must wait for all the data before they can start.

Figure 3-13. Multiple Connections to the Same Connection Point

Interform Connections

The examples to this point have shown connections between VTX
controls that reside on the same form. You can also draw connections
between VTX controls that reside on different Visual Basic forms.

Because the Graph and Text controls are the only VTX controls visible at
run time, you may want to separate these controls from the VTX controls
that are invisible at run time. In fact, if your application includes a user
interface that accepts user input at run time, it is strongly recommended
that you place the user interface controls on a separate Visual Basic form
from the VTX controls that are invisible at run time. Interform
connections between VTX controls let you maintain the flow of the
application and eliminate the need for code to pass data between VTX
controls.

Connections 3-27

Figure 3-14 illustrates a simple application that separates the VTX
controls that are invisible at run time from user interface controls. The
interform connection is also invisible at run time.

In Figure 3-14, the interform connection between the Graph control and
the Data control is marked by the letter A in a box, called a connection
label. All interform connections have connection labels near the source
and destination controls. As you create interform connections, the letters
are incremented alphabetically. You can draw up to 702 interform
connections in a single VTX application.

An interform connection may also have a number near the source control.
As with connections on a single form, the number indicates the order in
which you draw the connections and the order in which the destination
control processes the connection.

Figure 3-14. Example of Interform Connections

Interform connection
starts at DataCtrl1

Interform
connection
ends at
GraphCtrl1

Connection label

Connection label

3-28 Understanding the VTX System

Figure 3-15 illustrates the use of four interform connections in a more
complex VTX example application (EXDAS1A.MAK). This example
reads analog input data from channel 2 of the DAS-Demo Device and
then graphs the data both before and after a low-pass filter is applied.
Once started, the application runs continuously until the Stop button is
clicked. The interform connections from the Graph controls to the DAS
control create this loopback.

Figure 3-15. Using Separate Forms and Interform Connections

Interform
connection C

Interform
connection D

Interform
connection
A

Interform
connection
B

Interform connections

Connections 3-29

In Figure 3-15, the user interface form uses Visual Basic command
buttons to let users decide when the operations start and stop, when to exit
the application gracefully (Close), and when to display a message box
that briefly describes what the application does (About). It also uses two
Graph controls to graph the analog input data before and after a low-pass
filter is applied. The VTX Controls form contains the DAS control used
for the analog input operation and the Frequency control that applies the
low-pass filter.

You create interform connections in much the same way you draw
connections between VTX controls that reside on the same form. See
“Drawing Interform Connections” on page 4-9 for details.

In a complex application with multiple forms, viewing all the forms at
once is not always easy. You can display information about an interform
connection without displaying both forms by positioning the cursor on the
letter and clicking the right button on your mouse. A dialog box displays
the names of the source and destination controls for the connection.
Figure 3-16 shows an example of the Interform Connection dialog box for
the interform connection in Figure 3-14.

Figure 3-16. Example of the Interform Connection Dialog Box

In the dialog box, each form is identified using the text of its Caption
property, and each VTX control is identified using the text of its Name
property.

Note: In Visual Basic, a form must be loaded for the controls on the form
to run. If you use multiple forms, ensure that the forms are loaded
appropriately at run time. For information on loading forms, see your
Visual Basic documentation. For examples of using multiple forms in a
VTX application, see the VTX example programs.

3-30 Understanding the VTX System

Concept Summary

This chapter introduced the concepts that you need to understand to use
the VTX system. The online help also provides some of this information;
in addition, the online help provides control-specific details. The concepts
are summarized as follows:

● Integrated controls - VTX controls can pass data and program control
among one another, without requiring you to write any code; you
control this communication capability by drawing connections
(wires) between the controls.

● VTX environment - The integration of VTX controls creates the VTX
environment, where you can develop simple and complex
applications. This environment is open and completely compatible
with Visual Basic.

● Processes - Operations that the VTX controls can perform.

● Process sources - The hardware or software resources on the
computer that perform the operations (processes).

● Control-level properties - Every VTX control has the same set of
properties in the Properties window. The choices you make for the
Process and ProcessSrc properties determine the availability of
properties in the More Properties window.

● Operation-specific properties - Every VTX control has an additional
set of properties that appear in the VTX More Properties window.
These properties let you set parameters for the selected process and
process source.

● Source control - A VTX control that sends data and/or program
control.

● Destination control - A VTX control that receives data and/or
program control.

● Control - Message that instructs a VTX control that it can start its
configured process.

● Data - In the VTX environment, a data element is a single unit of
data; a data set consists of one or multiple data elements; and data or
a data group consists of multiple data sets.

Concept Summary 3-31

● Connections - Represented visually by lines (wires) drawn between
the VTX controls, connections enable control and data to pass from
one VTX control to another. Interform connections let you place VTX
controls on different forms while maintaining the flow of your
application.

● Connection points - The small rectangles on the left and right sides of
a VTX control. The connection points on the left side are input
connection points; the connection points on the right side are output
connection points. When drawing connections, draw the line (wire)
from an output connection point to an input connection point.

4-1

4

Building Complex Applications

This chapter describes in detail the major steps in building a complex data
acquisition application with the VTX system and Visual Basic. This
chapter assumes that you have completed the tutorial in Chapter 2 and
understand the concepts explained in Chapter 3. Refer to the online help
for a complete reference for VTX properties, events, and functions.

The major steps in building a complex application are similar to those for
building a simple application, as follows:

1. Plan the application.

2. Design the user interface for the application.

3. Set properties for all controls.

4. Connect the VTX controls.

5. Write code for the application.

6. Test, debug, and prepare the application for distribution.

Notes:

The instructions in this chapter apply to both Visual Basic 3.0 and
the 16-bit versions of Visual Basic 4.0.

The illustrations in this chapter were created using Visual Basic 3.0;
differences between the Properties window in Visual Basic 3.0 and 4.0 are
noted as appropriate.

The term "code module" applies to Visual Basic 3.0; Visual Basic 4.0
documentation indicates that this term has been replaced by "standard

module" for Visual Basic 4.0. This chapter uses the Visual Basic 3.0 term.

4-2 Building Complex Applications

Planning the Application

Answers to the following questions can guide the plan for a VTX
application:

●

What operations does the application perform? For example, if the
application acquires data from analog input channels, filters that data
with a Fast Fourier Transform operation, and then graphs the results,
you will need a DAS control, a Frequency control, and a Graph
control.

●

What parameters do the operations require and how are they set?
Continuing the example, if the users of the application will decide
which analog input channels to sample and how many samples to
acquire, the user interface will require controls that accept user input,
and code will be needed to pass the user input to the DAS control.
You can use the standard Visual Basic label control to display text
describing the parameters to set and the Visual Basic text box or
combo box control to accept user input for the parameters.

●

How is data displayed and used? If you want to graph data, what type
of graph best suits your needs? The VTX Graph control provides line
charts, strip charts, and bar charts. If you want to display the data in a
table, you can use the VTX Text control. If you need to use the data in
formulas that you have set up in a Windows spreadsheet application,
transfer the data to a spreadsheet using the DDE process of the
Transfer control.

●

What status information is required? Do you need to know when a
VTX control completes its process? If so, you can display the
information in a label control using code in the ProcessDone event
procedure of the VTX control.

●

How do you want to handle warnings and errors? Do you want to
ignore certain conditions and continue? Do you want to stop the
application if a certain condition occurs? Use the ProcessDone and
ProcessError event procedures of the VTX controls to handle these
conditions.

Once you answer these questions, you can begin creating the application
by designing the user interface.

Designing the User Interface 4-3

Designing the User Interface

As you have seen in the Chapter 2 tutorial, you can design a user interface
using a combination of standard Visual Basic and VTX controls. Recall
that you used only one form for all controls in the tutorial and that the
Graph and Text controls are the only VTX controls visible at run time.
While using just one form is fine for simple applications, more complex
applications often require a different approach, especially if you are using
multiple VTX controls that are invisible at run time. In fact, for complex
applications, it is strongly recommended that you use separate forms for
the user interface and the VTX controls that are invisible at run time.
Figure 4-1 shows a design-time view of two such forms used in a VTX
example program (EXDAS3.MAK).

Figure 4-1. Using Separate Forms for a Complex VTX Application

4-4 Building Complex Applications

The user interface form (VTX DAS Example 3) in Figure 4-1 uses the
Visual Basic frame control to create the following separate areas:

●

A/D Parameters frame - For setting parameters for the Analog In
process of the DAS control (channels, conversion rate, and number of
samples).

●

Transfer Parameters frame - For setting the parameters for the
Selection process of DataCtrl1 and thereby specifying the number of
data sets and data elements for the VB Array process to transfer.

●

Display Channel frame - For specifying the data set (channel) to be
displayed in the list box.

●

Status frame - For displaying the status of the Analog In process in a
label control.

In each frame, Visual Basic label controls are used to show the names of
the parameters users of the application can set. Visual Basic text boxes are
used to accept the user input.

In the center of the form is a Visual Basic list box to display the data
selected in the Display Channel frame. On the right side of the form are
the four command buttons that start the Analog In process (Start), stop all
processes (Stop), exit the application (Close), and display an About dialog
box for the application (About).

The VTX Controls form in Figure 4-1 uses the DAS, Data, and Transfer
controls to perform the supporting tasks for the user interface:

●

DAS control - Performs an analog input operation, based on the
channels, conversion rate, and number of samples specified by the
user.

●

Data control - Selects the data for display, based on the channels and
samples specified by the user.

●

Transfer control - Transfers the data specified by the user to a Visual
Basic array for display in the list box.

As with a simple application, the next task after designing the forms for a
complex application is setting the properties for the forms and controls.

Setting Properties 4-5

Setting Properties

In Chapter 2, you learned how to set properties for VTX controls at
design time in the Properties and More Properties windows and how to
set properties at run time using assignment statements. When you want to
quickly set up and run a simple application that tests your hardware, you
can set all the properties you need at design time in the Properties and
More Properties windows of the VTX controls and then run the
application. For more complex applications, you will need to set
properties in code.

For the example shown in Figure 4-1 on page 4-3, properties such as
Caption or Text and Name need to be set in the Properties window for the
Visual Basic controls on the user interface form (VTX DAS Example 3).
Similarly, properties for the VTX DAS, Data, and Transfer controls (VTX
Controls Form) need to be set in the Properties window and in the More
Properties window. To see the design-time property settings for this
example, follow these steps:

1. Open the project VTX DAS Example 3 (EXDAS3.MAK) in Visual
Basic by double-clicking the icon labelled DAS Example 3 in the
Keithley VTX program group. If Visual Basic is already running, you
can select Open Project from the File menu. From the Open Project
dialog box, locate the VTX\EXAMPLES directory, choose
EXDAS3.MAK from the list of files, and click OK.

2. After the project opens, double-click the form names,
EXDAS3A.FRM and EXDAS3B.FRM to display the forms.

3. From each form, select a control, and press F4 to display the
Properties window.

4. For the VTX controls, double-click the (More) property in the
Properties window to display the More Properties window.

Recall from Chapter 3 that the availability of properties in the More
Properties window depends on the settings of the ProcessSrc and Process
properties in the Properties windows. This relationship is important for
applications in which properties are set at run time (in code), such as VTX
DAS Example 3. While you cannot change the Process or ProcessSrc
properties in code, the choices you make at design time for these
properties determine the availability and valid settings of other properties
that you can change in code.

4-6 Building Complex Applications

In VTX DAS Example 3, users can specify the conversion rate and the
number of samples per channel for the Analog In process. Therefore,
while the ConvRate and Samples properties can be set at design time,
these properties must be set in code. Depending on the process source
selected for the DAS control, the valid settings for ConvRate and Samples
change. The section “Accepting User Input,” on page 4-21 shows the code
needed to set the ConvRate and Samples properties for this example.

Notes:

If you specify an invalid value for a property or an invalid
property for a process source, process, mode, or control, the VTX
software returns an error. Depending on the property, you may see the
error message at design time or at run time.

By default, the VTX system displays dialog boxes when warnings or
errors are detected at run time. These dialog boxes enable you to get help

with VTX warnings and errors while you are developing an application.

Connecting VTX Controls

In the tutorial in Chapter 2, you learned how to connect two VTX controls
on the same form. Chapter 3 provided additional information about the
types of connections and connection points for different VTX controls.
For VTX DAS Example 3, connections are required from the DAS control
to the Data control and from the Data control to the Transfer control.
These connections were drawn using the same steps you learned in
Chapter 2.

As you create more applications with VTX and Visual Basic, you may
want to use multiple connections to or from VTX controls, specify the
order in which the controls process the data on connections, draw
interform connections, or delete connections. This section explains how
to perform these operations.

Note:

You cannot connect to or from VTX controls that are in a Visual

Basic frame control.

Connecting VTX Controls 4-7

Displaying the Order of Multiple Connections

If you are making multiple connections to the same connection point, an
order number appears on the line near the source control. Figure 4-2
shows an example of multiple connections to the same connection point.
To see the numbers on the connections, select the destination control. In
Figure 4-2, the DataCtrl1 is selected.

Figure 4-2. Multiple Connections to the Same Input Connection Point

4-8 Building Complex Applications

Changing the Order of Multiple Connections

To change the order of multiple connections, click the number on the line.
The number is incremented by one when you click. The numbering of the
other connections changes automatically to reflect the new order.

Figure 4-3 shows the results of changing the order of the connections of
the example in Figure 4-2. The number of the connection from DASCtrl1
to the Data control was incremented from 0 to 2; the numbers of the
connections from the other two DAS controls incremented automatically
to 0 and 1, based on the original order in which the connections were
made.

Note:

When multiple connections to the same connection point exist, the
numbering determines the order in which incoming data is processed by
the VTX control. Numbering does

not

 determine the order in which the

processes run. See the online help for additional information.

Figure 4-3. Changing the Order of Connections

Connecting VTX Controls 4-9

Drawing Interform Connections

To connect two VTX controls that reside on different forms, perform the
following steps:

1. Display both forms.

2. With the cursor on the output connection point of the source VTX
control, press and hold down the left mouse button.

3. Drag the cursor across the forms to the input connection point of the
destination VTX control. Note that the cursor changes as you drag it.

4. When you reach the input connection point and the cursor changes,
release the left mouse button.

When you release the mouse button, the connection is represented on the
form of the source control by a line from the output connection point to a
box containing a letter. The letter associated with an interform connection
indicates the order in which the connection was made. On the form of the
destination control, the connection is represented by a line from another
box with the same letter to the input connection point.

The placement of the VTX controls on the two forms determines how the
connections appear. You cannot re-route an interform connection; instead,
you must delete and then recreate it.

Note:

Before deleting interform connections, ensure that you have the
forms containing the source and destination controls displayed.

Otherwise, the deletion and subsequent additions may not work properly.

4-10 Building Complex Applications

Figure 4-4 shows an interform connection between a Data control and a
Graph control.

Figure 4-4. Interform Connection Example

Interform
connection A

Connecting VTX Controls 4-11

For the application to run properly when you have interform connections,
follow these steps:

1. Set to Hold the ArmState property of the first VTX control that will
run. In the example in Figure 4-4, set the ArmState property of the
DAS control to Hold at design time.

2. Load any forms that contain VTX controls connected to the first form.
You can load a form by referencing the form name in code. For
example, include the form name in the assignment statement that sets
a property for a control that resides on the form.

For performance reasons, you may want to load forms in the
Form_Load event procedure of the default Visual Basic form (the one
that loads when the application starts. Alternatively, you can load
forms in the ProcessDone event procedure of the appropriate source
controls. Refer to your Visual Basic documentation or online help for
more information on loading forms.

Deleting Connections

To delete any type of connection, perform the following steps:

1. Select the connection by clicking it with the left mouse button. For
interform connections, you can select the connection on either form.

2. Press

Delete

.

Notes:

You cannot use the Cut, Copy, and Paste commands in the Visual
Basic Edit menu with VTX connections. You must use the

Delete

 key to
remove connections.

Before deleting interform connections, ensure that you have the forms
containing the source and destination controls displayed. Otherwise, the

deletion and subsequent additions may not work properly.

4-12 Building Complex Applications

Because you can easily select both a VTX control and its connections,
ensure that only the connection you want to delete is highlighted. For
example, in Figure 4-5, the Data control and the three connections to the
control are selected. To delete only one of the connections to the Data
control, you would deselect the Data control and click only the
connection you want to delete.

Figure 4-5. Selecting Connections for Deletion

Writing Code

You can create simple VTX applications without writing any code.
Connections between VTX controls enable you to read analog input data
and display it without a single line of code. However, complex
applications that let users specify the parameters for an operation and
decide when to run the operation do require some code. The code
integrates the Visual Basic components of the user interface with the
supporting tasks performed by the VTX controls. For example, when a
user specifies the number of samples to read in a Visual Basic text box, an
assignment statement passes the information to the VTX DAS control.
Write any code needed for your application after setting the properties
and connecting the VTX controls.

Writing Code 4-13

The VTX system provides events and functions that you can use to build
complex applications. This section briefly describes these features of the
VTX system. See the online help for details on events and functions.

To integrate the VTX components of a user interface (Text or Graph
control) with tasks performed by other VTX controls, all you need are
connections between the appropriate VTX controls. To integrate the
Visual Basic components of the user interface with the tasks performed
by VTX controls, you can use the event procedures of certain Visual Basic
controls on the user interface to set parameters for and start tasks
performed by VTX controls.

In the tutorial in Chapter 2, you used the Click event procedures of three
Visual Basic command buttons to start the VTX DAS control, prevent the
VTX controls from starting again, and gracefully exit the application.
This section provides additional examples for integrating the user
interface with tasks performed by VTX controls (including use of VTX
connections and code from VTX DAS Example 3). The examples show
you how to

●

Accept user input for the parameters of operations performed by VTX
controls.

●

Start and stop operations.

●

Display status information.

●

Display data.

VTX Events

All VTX controls provide two events that you can use as appropriate to
your application. The events are ProcessDone and ProcessError. You
cannot disable these events.

The CTM control provides an additional event that notifies you of the
completion of a counter/timer operation, ProcessCTMDone. You cannot
enable or disable this event. You may want to use the event procedure to
take action based on which CTM operation completed.

The DAS control provides an additional event that notifies you of the
status of an Analog In process: the NDataDone event. You can enable and
disable the NDataDone event with a property (NData). Refer to the VTX
online help for details.

4-14 Building Complex Applications

The Text control uses several standard Visual Basic events in addition to
ProcessDone and ProcessError. Refer to the Visual Basic

Language
Reference

 or online help for details on using these events.

Every event has an associated event procedure that you can use,
depending on the needs of your application. The rest of this section
describes the VTX events and ways in which you may want to use them
and provides a brief introduction to the standard Visual Basic events used
by the VTX Text control.

ProcessDone Event

The ProcessDone event indicates that a VTX control completed its
configured process. This event can also indicate the occurrence of a minor
problem (one that did not prevent the completion of the process). If a
minor problem occurs, the control generates a warning message.

The ProcessDone event returns either zero or non-zero values, as follows:

●

0

 - Indicates that the VTX process completed without a warning.

●

Integer > 0

 - Indicates that the control encountered a problem but
was still able to complete the process. The number is the code for the
warning message.

Note that even if the ProcessDone event returns a warning message code,
the application continues to run.

The VTX online help provides brief descriptions of all warnings
generated by VTX controls. Note that some warnings are common to all
VTX controls while others are specific to individual VTX controls. If you
cannot find a warning in the control-specific listing, check the listing in
the topic "Warnings and Errors Returned by All VTX Controls."

In the ProcessDone event procedure, you can test the value returned and
then perform additional tasks as appropriate to your application. For
example, when a process completes without a warning, you may want to
start the next VTX control by setting its ArmState property to 0 (Wait For
Control Connection) or 1 (Ignore Control Connection). If you are using
ProcessDone event procedures to control when VTX controls start, ensure
that, for each VTX control that is started in a ProcessDone event
procedure, you first set the ArmState property to Hold in the Properties
window or in code, as appropriate to your application.

Writing Code 4-15

ProcessError Event

The ProcessError event indicates that an error condition within the VTX
control caused that control to stop before completing its configured
process. This event automatically sets the ArmState property of the
stopped VTX control to the value Hold so that the control cannot run
again. Controls connected to the stopped control cannot run. However,
processes that are running independently of the stopped control continue
to run. Only the VTX control that generated the event stops running.

The ProcessError event occurs only if an error occurs. This event returns a
non-zero integer, which is the code for the error. In the ProcessError event
procedure, you can test the value and then, based on the value, take action
appropriate to your application. For example, you may want to clear the
control and data connections to affected VTX controls with the
ClearInputs property. See the online help for the ClearInputs property for
details.

The VTX online help provides brief descriptions of all errors generated
by VTX controls. Note that some errors are common to all VTX controls
while others are specific to individual VTX controls. If you cannot find an
error in the control-specific listing, check the listing in the topic,
"Warnings and Errors Returned by All VTX Controls."

For information on writing code to handle errors, see the section “Error
Handling,” on page 4-36, or the topic, "Writing Code to Handle Errors,"
in the online help.

ProcessCTMDone Event

The CTM control lets you synchronize multiple counter/timer operations
by letting you start up to five counter/timer operations at once. While the
ProcessDone event notifies you that all counter/timer operations are
complete, the ProcessCTMDone event notifies you when each
counter/timer operation completes. The event returns an integer that
corresponds to the number of the counter/timer operation that completed.

You cannot enable or disable this event. You may want to use this event to
take action based on which operation completed. For example, if the
EventCount operation completes, you may want to display the current
count. To display the current count, you can use the VTX Text control or a
Visual Basic label or text box control.

4-16 Building Complex Applications

NDataDone Event

The NDataDone event of the DAS control indicates that the control has
read the samples specified with the NData property. Setting NData to 0
disables the event. Setting NData to any other value enables the event and
specifies the number of samples read that generate the event.

The NDataDone event also notifies you that the samples specified with
NData have been sent out to the next VTX control in the application. You
might want to use the NData property and NDataDone event to send out
subsets of acquired samples for preliminary viewing in a graph or
spreadsheet. You can do this without writing any code.

See the online help for the DAS control, in particular the topics,
"NDataDone Event" and "NData Property," for more information.

Text Control Events

The Text control uses a set of standard Visual Basic events that occur as
appropriate at run time. Note that these events can occur when the Text
control is not running because editing is typically done before the Text
control starts or after the Text control runs. Refer to the Visual Basic
online help or the Visual Basic

Language Reference

 for details on these
events.

You do not need to write any code to accept or reject run-time edits.
While the Text control does not reject invalid key presses, the result
removes them because the Text control does check for valid formatting.
For example, suppose the specified format is General Number and the
user of the application enters 12XP and then clicks the Send button of the
Text control toolbar. The Text control checks the entry against the
specified format and, before sending out the data, changes it to 12. After
the data is sent, the display shows 12 instead of 12XP.

Most of the Visual Basic events are common to both Text control
processes.

Writing Code 4-17

Table 4-1 shows the Visual Basic events associated with each Text control
process. Related events are grouped together in this table.

VTX Functions

The VTX system provides the following functions:

●

VTX_SetDASChanRange

 - Use this function in combination with a
Visual Basic array to specify at run time the channels and ranges to
use for an Analog In or Analog Out process. The Visual Basic array
contains the channels and codes for ranges in pairs (one range code
per channel). The function specifies the array to the DAS control. For
more details on using this function, see the topic,
"VTX_SetDASChanRange Function," in the online help for the DAS
control. For an example of using this function, see “Accepting User
Input,” on page 4-21.

Table 4-1. Visual Basic Events for Text Control Processes

Process

Event Scalar Grid

KeyDown
KeyUp
KeyPress

✔ ✔

Click
DblClick

✔ ✔

MouseDown
MouseMove
MouseUp

✔ ✔

GotFocus
LostFocus

✔ ✔

SelChange
RowColChange

✔

Change

✔

4-18 Building Complex Applications

●

VTX_GetDASChanRange

 - Use this function to read at run time the
channels (and ranges) currently specified for an Analog In or Analog
Out process. You can read the settings selected at design time in the
Channel/Range dialog box or the settings made at run time with the
VTX_SetDASChanRange function and a Visual Basic array. For
details on using this function, see the topic,
"VTX_GetDASChanRange Function," in the online help for the DAS
control.

●

VTX_SetXferVBArray

 - To move data between the VTX
environment and a Visual Basic array, use the VB Array process of
the Transfer control. When using this process, you use the
VTX_SetXferVBArray function to specify your array to the Transfer
control. See the online help for the Transfer control for details on
using this function.

Note that you must declare these functions and their associated Visual
Basic arrays in the appropriate global module of your application. The
example programs provided with VTX software include a global module
called VTXDECL.BAS, which defines the Option Base (0) and declares
the VTX functions and a few global constants that you may want to use
with the ArmState property. You can copy what you require from
VTXDECL.BAS into your global module or from the online help.

The VTX_SetDASChanRange and VTX_SetXferVBArray functions
return the value zero when no error is encountered. If an error occurs,
these functions return a non-zero value that is the code for the error. See
the online help for assistance with errors returned by these functions.

Because the VTX functions can return error codes, it is strongly
recommended that you check the return value of each function in code to
ensure that the function was successful. VTX DAS Example 3 uses the
following code in the Click event procedure of the Start command button
check the return values of the VTX_SetDASChanRange and
VTX_SetXferVBArray functions:

'Declare a variable for the return values of the Transfer and DAS
'control functions
 Dim ReturnCode%

'Download the ChanRangeArray into the DAS Control
'Note: ReturnCode% will contain 0 if the function is successful.

ReturnCode% =
 VTX_SetDASChanRange(frmControls.DASCtrl1.hCtl, ChanRangeArray())

Writing Code 4-19

'Check that the function was successful.
'Display message if the function returns an error.

If ReturnCode% <> 0 Then
MsgBox "The Channel/Range data could not be set.", 48, "VTX Error"
End
End If

'Set DataBuffer as the array to receive data from the Transfer control
'Note : ReturnCode% will contain 0 if the function is successful.

ReturnCode% =
 VTX_SetXferVBArray(frmControls.XferCtrl1.Hctl, DataBuffer())

'Check that the function was successful.
'Display message if the function returns an error.

If ReturnCode% <> 0 Then
MsgBox "An array could not be passed to the Xfer control.", 48, "VTX
Error"
End
End If

Integration of the User Interface and Supporting Tasks

To integrate the VTX components of a user interface (Text or Graph
control) with tasks performed by other VTX controls, all you need are
connections between the appropriate VTX controls. To integrate the
Visual Basic components of the user interface with the tasks performed
by VTX controls, you can use code in the event procedures of certain
Visual Basic controls. In VTX DAS Example 3, assignment statements in
the Click event procedure of the command button captioned Start set the
ConvRate and Samples properties of the DAS control based on user input
in corresponding Visual Basic text box controls.

4-20 Building Complex Applications

Figure 4-6 shows VTX DAS Example 3 again; refer to it as you read this
section.

Figure 4-6. VTX DAS Example 3

Command
buttons

Label

List boxText boxes

Writing Code 4-21

Accepting User Input

VTX DAS Example 3 accepts user input for the parameters of the Analog
In process of DASCtrl1 and the Selection process of DataCtrl1. To let
users set these parameters, this application uses Visual Basic text boxes.
You can also use the standard Visual Basic list boxes, combo boxes, and
radio buttons to present users with a fixed list of settings.

To pass the user input to the VTX controls shown in Figure 4-6, you can
use either the appropriate event procedure for the Visual Basic control or
the Click event procedure for the Start command button. The example in
Figure 4-6 lets users specify the following parameters for the Analog In
process:

●

First and last channels (group of consecutive channels)

●

Conversion rate

●

Total number of samples to acquire

The following assignment statements in the Click event procedure of the
Start command button of this application accept user input when VTX
DAS Example 3 runs. Note that this code must use the name of the form
on which the VTX controls reside, namely

frmControls

.

frmControls.DASCtrl1.Samples = CLng(txtNumberSamples.Text)
frmControls.DASCtrl1.ConvRate = CLng(txtConvRate.Text)

The following code takes the first and last channels specified in the text
boxes and uses the VTX_SetDASChanRange function to specify the
channels and the same range for each channel to the DAS control:

'Calculate the ChanRangeArray
 Dim NumChans%, Channel%, Count%
 NumChans% = CLng(txtlastChan.Text) - CLng(txtFirstChan.Text) + 1
 ReDim ChanRangeArray(NumChans% * 2) As Integer
 ChanRangeArray(0) = NumChans% 'Number of channel-range pairs
 Channel% = CLng(txtFirstChan.Text)

 For Count% = 1 To 2 * NumChans% - 1 Step 2
 ChanRangeArray(Count%) = Channel% 'Channel number
 ChanRangeArray(Count% + 1) = 1 'Code for range
 Channel% = Channel% + 1
 Next Count%
'Specify the ChanRangeArray to the DAS Control
x = VTX_SetDASChanRange (frmControls.DASCtrl1.hCtl, ChanRangeArray())

4-22 Building Complex Applications

The user of the application can set the following parameters for the
Selection process:

●

First and last channels

●

Number of samples to extract (and transfer to a Visual Basic array
using the Transfer control)

The following code takes the user input for the channels and samples to
extract for the Transfer and sets the appropriate properties of the VTX
Data control. Note that the text boxes for the channels are called
txtFirstSet and txtLastSet. The text box for samples is called
txtSetLength. In the VTX environment, channels map to data sets and
samples to data elements.

'Set up the VTX Data control to select data
 Dim NumPoints, NumSets As Long

 NumSets = 1 + CLng(txtLastSet.Text) - CLng(txtFirstSet.Text)
 NumPoints = CLng(txtSetLength.Text)

 frmControls.DataCtrl1.FirstDataSet = CLng(txtFirstSet.Text)
 frmControls.DataCtrl1.NumDataSets = NumSets
 frmControls.DataCtrl1.NumElements = NumPoints

This code is in the Click event procedure for the Start command button.
However, it can also be in the ProcessDone event procedure for the DAS
control. In that case, you must follow these steps:

1. In the More Properties window, in the Click event procedure for the
Start command button, or in the ProcessDone event procedure for the
DAS control, set the ArmState property for the Data control to Hold.

2. In the ProcessDone event procedure for the DAS control, set up the
Data control properties as shown in the preceding code example.

3. In the ProcessDone event procedure for the DAS control, set the
ArmState property to Wait for Control Connection or Ignore Control
Connection to start the Data control.

Writing Code 4-23

The resulting ProcessDone event procedure for the DAS control follows.
Note that this example sets the ArmState property of the Data control to
Hold before setting up the Selection process and then sets the property to
Ignore Control Connection after the Selection process properties have
been set. Constants defined in the global module are used to set the
ArmState property (

HOLD and IGNORE_CONNECT).

Sub DASCtrl1.ProcessDone ()

’Put the Data control on Hold while setting its properties
 DataCtrl1.ArmState = HOLD

'Set up the VTX Data control to select data
 Dim NumPoints, NumSets As Long

 NumSets = 1 + CLng(txtLastSet.Text) - CLng(txtFirstSet.Text)
 NumPoints = CLng(txtSetLength.Text)

 DataCtrl1.FirstDataSet = CLng(txtFirstSet.Text)
 DataCtrl1.NumDataSets = NumSets
 DataCtrl1.NumElements = NumPoints

'Start the Data control
 DataCtrl1.ArmState = IGNORE_CONNECT

The Transfer control starts as soon as it receives data and control from the
Data control in this application.

The following code sets the dimensions of the Visual Basic array to which
the Transfer control transfers the analog input data to match the number
of samples (data elements) and the number of channels (data sets) that the
user has specified for the transfer:

'Reshape the Visual Basic array called DataBuffer to the required size
 ReDim DataBuffer(NumPoints - 1, NumSets - 1) As Integer

'Set the array called DataBuffer as the target of the Transfer Control
x = VTX_SetXferVBArray (frmControls.XferCtrl1.hCtl, DataBuffer())

The format of the Visual Basic array must be (number of data elements,
number of data sets). The dimensions of the array receiving the data must
match the dimensions of the data being transferred exactly. Otherwise, the
Transfer control returns an error at run time.

4-24 Building Complex Applications

Starting/Stopping Operations

For a VTX control to start, the following conditions must be met:

● The ArmState property of the control must be set to Wait For Control
Connection (0, the default) or Ignore Control Connection (1). This
property can be set at design time or at run time.

Note that when you set ArmState to Ignore Control Connection, the
control runs once when all data is available and then sets the property
to Wait For Control Connection. See the ArmState property
description in the online help for additional information.

● The conditions of all data input connections must be met before a
control can start.

For example, a Computation control has two data input connections,
one from a Statistics control and the other from a Data control. The
Statistics and Data controls must have completed their processes and
passed the data to the Computation control before the Computation
control can start its configured process.

The VTX Transfer control has an additional rule: If the configured
process is the VB Array process, then the control cannot start until you
have specified the Visual Basic array to the control (using the
VTX_SetXferVBArray function).

VTX DAS Example 3 uses two command buttons to start and stop
operations, labelled Start and Stop. As with the application in Chapter 2,
the Caption property of the command button that starts the operation is set
to Start and its Name property is set to cmdStart. Similarly for the
command button that stops the operation, the Caption property is set to
Stop and the Name property to cmdStop. To enable the command buttons
to start and stop the operation, code has been added to the Click event
procedures for the buttons.

Writing Code 4-25

Click Event Procedure - Starting VTX Controls

To enable the command button to start the operations set up with the VTX
controls in VTX DAS Example 3, the following assignment statement is
added to the Click event procedure for the Start command button:

frmControls.DASCtrl1.ArmState = IGNORE_CONNECT

where IGNORE_CONNECT is a global constant that represents the
ArmState property setting, Ignore Control Connection. This constant is
one of several defined in the global module that is included with the VTX
example programs (VTXDECL.BAS); you might want to copy the
constant definitions to make your code more readable.

The Ignore Control Connection setting for the ArmState property causes
the control to start when all data is available. After the control runs once,
the control automatically sets ArmState to Wait For Control Connection.
The Wait For Control Connection setting means that the control cannot
start again until its control and data input connections are met or until a
line of code sets the ArmState property for this control to Ignore Control
Connection. See the online help for details on using the ArmState
property.

Click Event Procedure - Stopping VTX Controls

To enable a command button to stop an operation or prevent an operation
from running again, use one of the following options:

● Visual Basic End Statement - Useful when debugging, this statement
stops everything.

● VTX ArmState Property - Useful when you have controls in a
loopback, set this property to Hold when you want to prevent a
control from starting again.

● VTX Halt Property - To stop VTX controls and ensure that they
cannot start again until other code is executed, use the following
assignment statement for each VTX control in the Click event
procedure for a command button:

x = VTXform . VTXcontrol .Halt 'stop the control

where x is a variable that you want to use to store the status of the
control before the control is stopped. The Halt property also sets the
ArmState property of the control to Hold so that it cannot start again

4-26 Building Complex Applications

until code changes the property setting to 0 - Wait For Control
Connection or 1 - Ignore Control Connection. You must use the Halt
property to stop a continuously running DAS process or a
continuously running CTM operation. See the online help for these
controls for details.

VTX DAS Example 3 uses the following code in the Click event
procedure of the Stop command button to stop the DAS control and
display a message concerning the status of the control prior to the halt:

Sub cmdStop_Click ()

 'Halt the DAS Control

 Dim Status%, State$, Message$

 'Halt the DAS control and record its prior status
 Status% = frmControls.DASCtrl1.Halt
 If Status% = RUNNING Then
 State$ = "running"
 Else
 State$ = "not running"
 End If
 Message$ = "The DAS control was " & State & ". A halt has been
issued."
 MsgBox Message$, 64, "DAS Example 3"
End Sub

How VTX controls are started, stopped, and prevented from starting again
is very specific to each application. Coordinate the properties that govern
these actions carefully to ensure that controls run only when you intend
them to run. For additional information, see the online help.

Writing Code 4-27

Displaying Status

All VTX controls generate one of two events that inform you of the status
of the control: ProcessDone or ProcessError. These events return values
that you can test. After testing a value in the associated event procedure,
you may want to display an appropriate message in a Visual Basic text
box in the user interface of the application. For example, the application
shown in Figure 4-6 on page 4-20 updates the label in the Status frame in
the ProcessDone event procedure for Transfer control, as follows:

frmMain.lblStatus.Caption = "Idle"

where frmMain is the name of the form on which the label control
resides (the VTX controls are on a separate form). For more information
on events, see “VTX Events,” on page 4-13 and the online help.

To check the status of a VTX control outside of the events, you can use
the Status property. For example, the following If statement tests the
value of Status:

If (DASCtrl1.Status) AND 1 = 0 Then ...

For more information on the Status property, see the online help.

In addition to the common Status property, the CTM control provides the
OpStatus property, which lets you check the status of any one of the five
possible counter/timer operations. Refer to the online help for the CTM
control for details on the OpStatus property.

Displaying Data

To display data, the VTX system provides the following controls:

● Text control - The Text control lets you create, display, and modify
data within the VTX environment, without requiring code. Use the
Scalar process when the data to be displayed consists of a single data
set with a single data element. The Scalar process produces a
text-box-like display. Use the Grid process when data consists of a
single data set with multiple data elements or multiple data sets with
one or more data elements.

● Graph control - The Graph control also lets you display data within
the VTX environment, without requiring code. Use the appropriate

4-28 Building Complex Applications

process to display data in a line or scatter chart (Line Chart process),
strip chart (Strip Chart process), or bar chart (Bar Chart process).

● Transfer control - The Transfer control lets you move data out of the
VTX environment for use with other Windows or Visual Basic
applications. Use the VBArray process to move data to a Visual Basic
array for use with another Visual Basic custom control. This process
requires additional code. To move data to a disk file, use the Disk
process. To move data to a Windows spreadsheet application, use the
DDE process. Neither the Disk nor DDE process require code. VTX
DAS Example 3 uses the Transfer control to move data to a Visual
Basic array for display in the list box on the user interface.

The supported spreadsheet applications are Microsoft Excel, Lotus
1-2-3, and Quattro Pro. See the README file for details on the
versions of these applications that are supported by the VTX
software.

Displaying a Scalar

Using the tutorial in Chapter 2, you created an application that displays a
sample read during a single-point digital input operation. Figure 4-7
shows the design-time view of this example again.

Figure 4-7. Displaying a Single Data Point - Design-Time View

 Text control,
Scalar process

Visual Basic command button controls

Writing Code 4-29

The Digital In process of the DAS control performs the single-point
digital input operation. The Scalar process of the Text control displays the
sample. The Start and Stop command buttons let the user of the
application control when the operation runs.

This example uses the DAS-Demo Device by specifying the alias, Pseudo
DAS Device, for the ProcessSrc property for the DAS control. The Scalar
process runs in Display mode. The process sources for a DAS control can
be any of the supported Keithley MetraByte boards. The Scalar process
can also run in Display-Modify mode, which lets you modify the
displayed data, or in Create mode, which lets you create a data point
(scalar) in the VTX environment.

At run time, the DAS control and its connection to the Text control are
invisible; all other controls are visible.

Figure 4-8 shows the run-time view of this application, with a data point
displayed.

Figure 4-8. Displaying a Single Data Point - Run-Time View

To create this simple application, refer to Chapter 2, "Creating Your First
VTX Application".

Displaying Data in a VTX Grid

To display data in a grid, use the Grid process of the Text control in
Display or Display-Modify mode. Use Display mode if you only want to
view the data. If you also want to enter new data, modify displayed data,
or send data to another VTX control, use Display-Modify mode.

1

4-30 Building Complex Applications

Figure 4-9 shows the design-time view of a simple application that
displays 10 samples from each of four analog input channels of the
DAS-Demo Device. The ProcessSrc property setting for the DAS control
is the alias for the DAS-Demo Device, Pseudo DAS Device.

Figure 4-9. Displaying Data in a Grid - Design-Time View

The Grid process in this example is running in Display mode. Because the
size and shape of the input data for the Grid process is known, the
NumColumns property for the Grid process has been set to 4 (for the four
analog input channels) and the NumRows property to 10 (for the 10
samples from each channel). The example uses no code; the DAS control
starts as soon as you run the application.

Note: If the NumColumns and NumRows properties were not set for this
example, the Text control would automatically set them to 4 and 10 at run
time. The Text control automatically increases the number of columns
and rows to accommodate incoming data.

Writing Code 4-31

Figure 4-10 shows the same Grid example at run time. The data from
channels 0 through 3 of the DAS-Demo Device is shown in Columns A
through D:

● Column A contains the 10 samples from Channel 0 (data set 0 from
the DAS control).

● Column B contains the 10 samples from Channel 1 (data set 1 from
the DAS control).

● Column C contains the 10 samples from Channel 2 (data set 2 from
the DAS control).

● Column D contains the 10 samples from Channel 3 (data set 3 from
the DAS control).

Figure 4-10. Displaying Data in a Grid - Run-Time View

4-32 Building Complex Applications

Note that because the data is shown using the Double data type, the cell
width for all cells in this grid has been adjusted to 3500. The units for the
cell width are 1/256th of the size of the letter O in the selected font. To
change the width for all cells in the grid, perform the following steps:

1. Select the Text control and click the ellipsis as indicated for the
(More) property to display the More Properties window.

2. In the More Properties window, ensure that the DataSetIndex
property is set to -1 (all data sets or columns).

3. Click the CellWidth property.

4. In the Settings Box at the top of the More Properties window, enter
the new width.

To change the cell width or any other attribute of a particular column,
perform the following steps in the More Properties window:

1. Set the DataSetIndex property to the index of the column you want to
change. For example, to change the attributes of the column with the
default heading A, change the DataSetIndex property to 0.

2. Click the property you want to change. For example, to change the
heading for the column with the default heading A, click the
DataSetLabel property.

3. In the Settings Box at the top of the More Properties window, enter
the text that you want to appear as the column heading. For example,
you might change column A in the example program to read
"Channel 0".

4. Repeat steps 2 and 3 for each property that you want to change for the
specified data set or column. The following properties let you specify
the attributes of a data set or column: CellWidth, DataSetLabel,
Format, HAlignment, and VAlignment.

See the topic, "Setting Up Grid Processes," in the online help of the Text
control for a detailed procedure for setting the properties for a Grid
process.

Writing Code 4-33

Graphing Data

To graph data from an analog input operation, follow these general steps:

1. Drop the DAS and Graph controls on a Visual Basic form.

2. Set up the Analog In process for the DAS control.

3. Choose the type of graph (Process property of the Graph control).

4. Set the properties for the Graph process as required.

5. Connect the data output connection point of the DAS control to the
data input connection point of the Graph control.

For a detailed procedure of setting up a line chart or a strip chart, see the
online help.

Figure 4-11 shows the run-time view of a simple application that graphs
100 samples from an Analog In process run with the DAS-Demo Device
as the process source.

Figure 4-11. Graphing Data

4-34 Building Complex Applications

Displaying Data in a List Box

VTX DAS Example 3 (shown again in Figure 4-12) displays data based
on the user selection in the Display Channel frame.

Figure 4-12. Displaying Data in a Visual Basic List Box

In this example, when the VB Array process of the Transfer control is
complete, the ProcessDone event procedure reads the selection in the
Display Channel combo box (DisplayChan), clears the list box that
displays data (lstData), and then displays the data from the Visual Basic
array (DataBuffer).

Command
buttons

Label

List boxText boxes

Writing Code 4-35

The ProcessDone event procedure is written as follows:

Sub XferCtrl1_ProcessDone (WarningCode As Integer)

Dim Count%, msg$, ChanNumber%

'Get the required channel to be displayed
ChanNumber% = frmMain.DisplayChan.ListIndex

'Clear the data list

frmMain.lstData.Clear

'Display the requested data from the Visual Basic
'array called DataBuffer
For Count% = 0 To UBound(DataBuffer, 1)

msg$ = Str$(Count%) + Chr$(9)
msg$ = msg$ + Str$(DataBuffer(Count%, ChanNumber%))

frmMain.lstData.AddItem msg$, Count%
Next Count%

End Sub

Displaying Data in a Windows Spreadsheet

To display data from an Analog In process in a Windows spreadsheet,
follow these general steps:

1. Drop the DAS and Transfer controls on a form.

2. Set up the Analog In process for the DAS control.

3. Set the Process property of the Transfer control to DDE to send the
data to a spreadsheet file.

4. Click the ellipsis as indicated for the (More) property to display the
More Properties window.

5. In the More Properties window, select Out From VTX for the
Direction property.

6. Use the other DDE process properties to specify the spreadsheet
application, spreadsheet file, and starting location in the spreadsheet
for the data. For details on these properties, see the online help.

7. Connect the data output connection point of the DAS control to the
data input connection point of the Transfer control.

4-36 Building Complex Applications

8. Save the project files and run the application. Depending on the
property settings, you might need to start the destination spreadsheet
application before running your application.

When the application runs, the analog input data is transferred to the
Windows spreadsheet. Figure 4-13 shows a design-time view of this
application.

Figure 4-13. Transferring Data to a Spreadsheet

Error Handling

Errors can occur when lines of code are executing (execution errors) and
when a VTX control is running its configured process (process warnings
and process errors):

● Execution errors can be standard Visual Basic errors, errors specific
to VTX controls, or errors generated by the DAS drivers that support
the Keithley MetraByte DAS boards. These errors include problems
such as an invalid setting for a property or an invalid property for a
control.

● Process warnings and process errors can be specific to VTX
controls or generated by the DAS drivers that support the Keithley
MetraByte DAS boards. Process warnings and process errors include
such conditions as a process overrun (a VTX control tries to start
another VTX control that is still running) or a FIFO (first-in, first-out)
overflow on a DAS board.

Transfer control
set up to send
data to a
spreadsheet
using DDE

DAS control
set up for an
Analog In
process

Writing Code 4-37

Note that you can avoid process overruns by using the ClearInputs
property in conjunction with the ArmState property in the
ProcessDone event procedures for VTX controls or in Click event
procedures for command buttons that start or stop operations. See the
online help for the ClearInputs property for more information.

Execution Errors

Execution errors can occur when you try to run a Visual Basic application
and a line of code contains an error. Visual Basic, the VTX system, or the
DAS driver may discover these errors.

By default, execution errors detected by the VTX system or the DAS
driver produce a VTX dialog box that displays the name of the VTX
control that generated the error as well as the error number and message.
The dialog box also contains the following buttons:

● Help - Provides access to a related topic in the VTX online help
system. The dialog box remains open while you access the VTX help
system.

● OK - Exits the dialog box.

When you exit the VTX dialog box, the standard Visual Basic error
handler resumes control. Standard Visual Basic error handling means that
if it exists (invoked by the OnError statement), the error handling
subroutine will run. If the error handling subroutine does not exist, Visual
Basic presents its error message dialog box and stops the application.

Note: If Visual Basic detected the error, the VTX dialog box cannot
appear because the standard Visual Basic error handler retains control.

If you want to disable the error dialog box and access to help, use the
VTX Options window of the VTX Configuration utility. When you
disable the Help On Errors option, the VTX dialog box does not appear
and the standard Visual Basic error handler retains control. See the
section, “Enabling and Disabling VTX Options,” on page 4-41 for more
information on the VTX Options window.

4-38 Building Complex Applications

In each code module in which you set properties for the VTX controls, it
is strongly recommended that you add code to handle error messages that
may be returned. Otherwise, any execution error that occurs causes Visual
Basic to generate an error message and stop the program. See the Visual
Basic online help for assistance in using the OnError and Resume
statements and the Err, Erl, Error, and Error$ functions to write error
handling subroutines.

Process Warnings and Errors

Process warnings and process errors can occur only after a VTX control
starts running its configured process. The VTX control or a DAS driver
may detect process warnings and errors. Note that the VTX controls
communicate these errors through events. Therefore, instead of using the
OnError subroutine to handle these errors, you must use the associated
event procedures.

Process warnings and errors provide the following information:

● Process Warnings - Indicate that a minor problem occurred while the
process was running. Warnings do not stop a VTX control from
completing its configured process. The control communicates the
condition to you through the warning number value returned by the
ProcessDone event.

● Process Errors - Indicate that the control stopped before completing
its configured process because of a particular condition. The control
communicates the condition to you through the error code value
returned by the ProcessError event.

By default, the dialog boxes for the process warnings and errors are
enabled so that you can quickly get help with process errors. These dialog
boxes display the name of the VTX control that generated the warning or
error, text describing the problem, and the warning or error number. The
warning and error dialog boxes also contain the following buttons:

● Help - Provides access to a related topic in the VTX online help
system. The dialog box remains open while you access the VTX help
system.

● OK - Exits the dialog box.

Testing, Debugging, and Preparing for Distribution 4-39

The warning dialog box contains an additional button, called Stop. This
button stops all VTX controls and sets their ArmState property to Hold so
that they cannot start again until you set the ArmState property to Wait
For Control Connection or Ignore Control Connection.

You can disable these dialog boxes and the help button using the VTX
Options window of the VTX Configuration utility. However, leaving these
VTX programming environment options while you are building and
debugging applications is recommended.

Testing, Debugging, and Preparing for Distribution

Visual Basic provides the Breakpoint, Single Step, and Procedure Step
tools for testing and debugging applications. Effective use of these tools
with VTX controls requires manipulation of the ArmState property of the
VTX controls.

While you are testing and debugging an application, it is recommended
that you leave the warning and error message dialog boxes and access to
VTX online help enabled. When ready to distribute your application, you
can disable these VTX options using the VTX Options configuration
window of the VTX Configuration utility.

To ensure that your application will run on other computers, you must
include certain files when distributing your VTX application. You may
want your setup program to install these files in the appropriate
directories.

The following subsections explain how to use Visual Basic debugging
tools with VTX controls and how to disable the VTX warning and error
message dialog boxes. The last subsection lists the files you need to
include when distributing your VTX application.

4-40 Building Complex Applications

Using Visual Basic Debugging Tools with VTX Controls

The Visual Basic Breakpoint, Single Step, and Procedure Step affect only
lines of Visual Basic code. Therefore, these tools do not stop VTX
processes from completing and sending control and data to the next VTX
control in a series. The next VTX control runs (as long as all of the
starting conditions are met), independent of Breakpoint, Single Step, and
Procedure Step.

However, Breakpoint, Single Step, and Procedure Step do prevent the
ProcessDone event from occurring. Therefore, to use these debugging
tools effectively with VTX applications, you must specify when the VTX
controls start as follows:

1. For the first VTX control in the series, set the ArmState property in
the Properties window or in code so that the control starts when
appropriate to the application.

2. In the Properties window, set the ArmState property for the remaining
VTX controls in the series to Hold. This setting prevents these VTX
controls from starting until a line of Visual Basic code changes the
ArmState property to Wait For Control Connection (0) or Ignore
Control Connection (1).

3. In the ProcessDone event procedure of the first VTX control, set the
ArmState property for the second VTX control in the series to Wait
For Control Connection (0) or Ignore Control Connection (1).

4. Based on the needs of your application, continue setting the ArmState
property to Wait For Control Connection (0) or Ignore Control
Connection (1) for the remaining VTX controls in the appropriate
ProcessDone event procedures. For example, you might set this
property for critical controls only or for every other control.

After setting the ArmState property for each VTX control in this way, you
can use Breakpoint, Single Step, and Procedure Step to debug VTX
applications.

Testing, Debugging, and Preparing for Distribution 4-41

Enabling and Disabling VTX Options

While you are building an application, the VTX warning and error dialog
boxes can be useful. However, if you are distributing an application to end
users, you may want to disable these dialog boxes. Use the VTX Options
configuration window of the VTX Configuration utility to disable the
following options:

● VTX process warning message dialog box

● VTX process error message dialog box

● Execution error message dialog box and access to the VTX online
help from the warning and error dialog boxes

To enable or disable these options, perform the following steps:

1. From the Keithley VTX window in the Windows 3.1 Program
Manager or on the Windows 95 desktop, double-click the VTX
Configuration icon.

2. Click the VTX Options tab.

3. Click the appropriate checkbox.

The settings you select are automatically saved when you exit the VTX
Options window.

4-42 Building Complex Applications

Selecting Files for Distribution

To ensure that your VTX application will run on other computers, you
need to include certain files with your application. You may want your
setup program to install them automatically (in a directory local to your
application). Table 4-2 lists the files you need to include for any VTX
application and for each VTX control that you may use in your
application.

Table 4-2. Files Required for Distributing VTX Applications

VTX Component Required Files Default Location

All VTX applications ERRORBOX.DLL
LINKLIST.DLL
NUMOBJ.DLL
TASKING.DLL
VBXDLL.DLL
VDASTASK.EXE
VTXERROR.EXE

C:\WINDOWS\SYSTEM

VTX.INI C:\WINDOWS

CTM control CTMAPI.DLL
CTM05.DLL
CTSHELL.DLL
K_CTM.VBX

C:\WINDOWS\SYSTEM

METRABYT.INI C:\WINDOWS

DAS control DASAPI.DLL
K_DAS.VBX, plus board-specific
files, as listed in the next section,
"Board-Specific Files"

C:\WINDOWS\SYSTEM

Data control DATAAPI.DLL
K_DATA.VBX

C:\WINDOWS\SYSTEM

Logic control K_LOGIC.VBX
LOGICAPI.DLL

C:\WINDOWS\SYSTEM

Text control K_TEXT.VBX
TEXTAPI.DLL
VTSSDLL.DLL

C:\WINDOWS\SYSTEM

Transfer control K_XFER.VBX
XFERAPI.DLL

C:\WINDOWS\SYSTEM

Testing, Debugging, and Preparing for Distribution 4-43

Board-Specific Files

The board-specific files required for the DAS control depend in part on
the board used with the application. The location of the files depends on
whether or not you chose the default location. In general, the required
files and their default locations are as follows:

● From the C:\WINDOWS directory:

– DASSUPRT.DLL

– DASSHELL.DLL

– VDMAD.386 (Windows 3.x)
VDMAD.VXD (Windows 95)

– METRABYT.INI

– boardname.DLL (for example, DAS1800.DLL)

● From the appropriate board-specific software directory (for example,
C:\VTX\DAS1800\):

– boardname.VTX, which is the configuration file created for the
board with the VTX Configuration utility (for example,
DAS1800.VTX)

Computation control COMPAPI.DLL
CRVFT.DLL
K_COMP.VBX

C:\WINDOWS\SYSTEM

Frequency control FREQAPI.DLL
FREQSUPT.DLL
K_FREQ.VBX

C:\WINDOWS\SYSTEM

Statistics control K_STAT.VBX
STATAPI.DLL

C:\WINDOWS\SYSTEM

Graph control GRAPHAPI.DLL
GSW.EXE
GSWDLL.DLL
K_GRAPH.VBX
VTXAG.DLL

C:\WINDOWS\SYSTEM

Table 4-2. Files Required for Distributing VTX Applications (cont.)

VTX Component Required Files Default Location

4-44 Building Complex Applications

– Engineering units definition files (SENSx.DEF)

● From the VTX directory (by default, C:\VTX):

– CALL32.DLL

– ADVAPI32.DLL

● From the VTX\KMM directory (by default, C:\VTX\KMM):

– KMMSETUP.EXE (Keithley Memory Manager utility)

– KMMSETUP.HLP (Windows 3.x)

– VDMADW95.HLP (Windows 95)

● Any other files that the board software may require

If you cannot locate a board-specific file, you can search for the file using
one of the following options:

● The Search option available in the File menu of the Windows 3.x File
Manager

● The Find option available from the Start menu of the Windows 95
task bar

● The Search option available from the File menu of the Windows 95
Explorer

Alternatively, display the METRABYT.INI file using any text editor. This
file contains the complete path to these files for each board family.

Caution: Be extremely careful when viewing the METRABYT.INI file
with a text editor. Any inadvertent changes to the file can cause problems
for VTX applications using the DAS and CTM controls and the boards
whose support files are listed in this file.

INI Files

The VTX.INI file is required for a VTX application to operate on the
target PC. If the application uses the DAS control, a METRABYT.INI file
is also required. Examine the contents of these two files to determine the
tasks required of your installation program. You may want to install a
copy of your VTX.INI file. However, if you do this, ensure that the paths

Testing, Debugging, and Preparing for Distribution 4-45

stored in the INI file match the installed locations of the respective files
on the target computer.

It is strongly recommended that installation programs place the two INI
files in the WINDOWS directory of the target computer.

You may want to reduce the contents of the METRABYT.INI file if your
application supports a subset of the boards listed in your own
METRABYT.INI file.

Note: If you do not want your application to display VTX error and
warning messages, ensure that you disable these options in the
appropriate line of the VTX.INI file that accompanies your application.

It is anticipated that you will create your own error messaging and online
help for your VTX applications. However, if you plan to let your
application display VTX error and warning messages with help buttons,
you must include the help files (extension HLP) for the respective VTX
controls. Look at the VTX.INI and METRABYT.INI files to determine
the names and locations of these help files. In addition, you must install
the VTXHLP.DLL file in the WINDOWS\SYSTEM directory of the
target computer.

VDMAD.386 File (Windows 3.x)

The VDMAD.386 file is required for VTX applications running under
Windows 3.x. Whether you need to distribute this file with your
application depends on whether or not VTX software is already installed
on the target computers. Follow the instructions in the section below that
applies to the computers on which your application will be installed.

VTX Software Already Installed

For applications that will run on computers that are running Windows 3.x
and VTX software, you do not need to include the VDMAD.386 file with
your distribution files because the VTX software installs it. However,
users of your application should ensure that sufficient memory is reserved
for the application by using the KMM (Keithley Memory Manager)
window of the VTX Configuration utility.

4-46 Building Complex Applications

At installation, the VTX software automatically modified the
SYSTEM.INI file and reserved 128K bytes of memory for use by VTX
applications. If users of your application need assistance in using the
KMM window of the VTX Configuration utility, online help for using the
KMM with Windows 3.x is available by clicking the Help button in the
KMM window.

VTX Software Not Installed

For applications that will run on computers that run Windows 3.x but do
not have VTX software installed, you will need to include the
VDMAD.386 file with your distribution files and install it in the
WINDOWS directory of the target computer. You also need to install the
Keithley Memory Manager (KMM) setup utility on the target computers.
The following additional files are required on your distribution disks:

● KMMSETUP.EXE

● KMMSETUP.HLP

Install these files in the same directory as other board-specific software.

To install and set up the KMM, you or the users of the application run the
KMMSETUP.EXE utility. This utility updates the SYSTEM.INI files on
the target computer so that sufficient memory is available for the
VTX-based application. The KMM setup utility provides the same
features as the KMM window of the VTX Configuration utility; the
KMMSETUP.HLP file provides the online help for the utility.

Alternatively, you can install the VDMAD.386 file and then manually
change the [386Enh] section of the SYSTEM.INI file on the target
computer, as follows:

1. Replace the line device=*vdmad with the following line:

device=[full path and name of vdmad.386]

2. Add the following line:

KEIDMAHEAPSIZE=x

where x is the amount of memory (in K bytes) that you want the
VDMAD to allocate.

Testing, Debugging, and Preparing for Distribution 4-47

VDMAD.VXD File (Windows 95)

The VDMAD.VXD file is required for VTX applications running under
Windows 95. Whether you need to distribute this file with your
application depends on whether or not VTX software is already installed
on the target computers. Follow the instructions in the section below that
applies to the computers on which your application will be installed.

VTX Software Already Installed

For applications that will run on computers that are running Windows 95
and VTX software, you do not need to include the VDMAD.VXD file
with your distribution files because the VTX software installs it. However,
users of your application should ensure that sufficient memory is reserved
for the application by using the KMM (Keithley Memory Manager)
window of the VTX Configuration utility.

At installation, the VTX software automatically modified the Windows 95
Registry and the SYSTEM.INI file and reserved 128K bytes of memory
for use by VTX applications. If the users of your application need
assistance in using the KMM window of the VTX Configuration utility,
online help for using the KMM with Windows 95 is available by clicking
the Help button in the KMM window.

VTX Software Not Installed

For applications that will run on computers that run Windows 95 but do
not have VTX software installed, you will need to include the
VDMAD.VXD file with your distribution files and install it in the
WINDOWS directory of the target computer. You also need to install the
Keithley Memory Manager (KMM) setup utility on the target computers.
The following additional files are required on your distribution disks:

● KMMSETUP.EXE

● VDMADW95.HLP

Install these files in the same directory as other board-specific software.

4-48 Building Complex Applications

To install and set up the KMM, you or the users of the application run the
KMMSETUP.EXE utility. This utility updates the Windows 95 Registry
and SYSTEM.INI files on the target computer so that sufficient memory
is available for the VTX-based application. The KMM setup utility
provides the same features as the KMM window of the VTX
Configuration utility; the VDMADW95.HLP file provides the online help
for the utility.

X-1

Index

Symbols

(More) property

3-10

A

About property

3-10

accepting user input

4-21

accessing board-specific information

xv

accessing VTX online help
from the Keithley VTX program group in

Windows 3.x

xiii

from the Windows 95 desktop

xiv

from Visual Basic

xiii

Add New Board dialog box

1-9

adding a control to an application manually

1-19

alias
changing

1-11

definition

1-11

Analog In process
VTX_SetDASChanRange function

4-17

VTXGetDASChanRange function

4-18

Analog In process, example

4-33

Analog Out process
VTX_SetDASChanRange function

4-17

VTXGetDASChanRange function

4-18

Analysis module

3-7

applications
debugging

4-40

disabling VTX options for distribution

4-41

planning

4-2

selecting files for distribution

4-42

Applications Engineering

xvii

ArmState property
definition

3-10

example

4-22

preventing VTX controls from starting
again

4-25

starting VTX controls

4-24

,

4-25

using with multiple forms

4-11

arrays, declaring

4-18

assumptions (tutorial)

2-1

AUTOLOAD.MAK, adding VTX controls

1-21

B

Back to DAS button

xvi

backing up the master disks

1-4

backup commands

1-4

Board Specifics button

xvi

board-specific software, installing

1-5

Breakpoint, using with VTX

4-40

C

calibration

1-14

changing an alias

1-11

changing the configuration of a registered
board

1-10

changing the order of multiple connections

4-8

checking system requirements

1-2

checking the package

1-3

ClearInputs property

3-10

Click event procedures for command buttons

4-25

code examples
starting VTX controls

4-25

stopping VTX controls

4-25

X-2 Index

code module, as used in this guide

4-1

code, writing

4-12

command buttons
setting properties (tutorial)

2-16

command buttons, for starting and stopping
VTX controls

4-24

,

4-25

complex applications

4-1

Computation control

3-7

concept summary

3-30

configuration utility

3-7

configuration, changing

1-10

configuring boards for use with VTX

1-7

configuring VTX options

4-41

connect the VTX controls (tutorial)

2-22

connecting VTX controls (additional
operations)

4-6

connection points

3-22

 to

3-25

,

3-31

connection types

3-21

connections

3-20

 to

3-26

changing the order

4-8

definition

3-16

,

3-31

deleting

4-11

displaying the order

4-7

drawing across forms

4-9

overview

3-6

control connections

3-21

control input connection points

3-22

control output connection points

3-22

control properties

3-8

control, passing

3-16

,

3-30

controls
list of filenames

1-18

loading manually

1-19

location of VBX files

1-20

conventions used in this guide

xi

conversion equations

1-12

Counter/Timer (CTM) control

3-6

creating your first VTX application

2-1

CtlConnection property

3-10

CtlVersion property

3-10

CTM boards
alias

1-11

changing configuration

1-10
deleting a registered board 1-10
registering and configuring for use with

VTX 1-7
CTM control 3-6

D
DAS Base Module 3-6
DAS Base module 3-5
DAS boards

alias 1-11
calibration 1-14
changing configuration 1-10
configuring 1-7
deleting a registered board 1-10
families 1-9
installing hardware 1-17
registering 1-7

DAS control 3-6, 4-16, 4-17, 4-18
setting properties (tutorial) 2-11

DAS Hardware configuration window 1-8,
3-7

DAS-Demo Device 3-7
data 3-17 to 3-20
data connections 3-21
Data control 3-6

using to manage data flow 3-16
data conversions, setting up 1-12
data display 4-27
data element 3-17
data group 3-17
data input connection points 3-22
data output connection points 3-22
data set 3-17
data set appending 3-18
DataConvType property 1-12

X-3

DDE process, example 4-35
debugging VTX applications 4-40
default alias 1-12
Delete key, using with connections 4-11
deleting a connection, line, or wire 4-11
deleting a registered board 1-10
design the user interface (tutorial) 2-3
designing the user interface (complex

application) 4-3
destination controls 3-14, 3-30
dialog boxes for errors, enabling and

disabling 4-41
disabling error dialog boxes for distributing

VTX applications 4-45
displaying data 4-27
displaying status 4-27
displaying the order of multiple connections

4-7
distributing applications 4-42
dragging, definition 2-6
drawing a line/connection/wire between

VTX controls 2-22
drawing interform connections 4-9
drawing lines, wires, or connections 4-6

E
element, data 3-17, 3-30
End statement 4-25
engineering units 1-12
equations, specifying 1-12
error message dialog box 4-41
errors 4-36 to 4-39

dialog boxes 4-41
handling 4-36
invalid property settings 4-6
process overrun 4-37
Transfer control and array dimensions

4-23

event counter 3-6
events 4-13 to 4-15

CTM control 4-15
returning status information 4-27
Text control 4-16

execution errors 4-36

F
filenames, VTX controls 1-18
files required for distributing VTX-based

applications 4-42
form properties, setting (tutorial) 2-9
forms

loading 4-11
recommendations for using 4-3

frame control (Visual Basic) 4-6
Frequency control 3-7
frequency measurement 3-6
functions 4-17

G
getting additional help xvii
Graph control 3-7

displaying data 4-27
Graph module 3-7
group, data 3-17, 3-30

H
Halt property 3-10, 4-25
handling errors 4-36
hardware installation 1-17
hCtl property 3-10
help system xii

X-4 Index

I
input connection points 3-22
INSTALL.TXT file 1-1
installation procedure 1-4
installing hardware 1-17
installing hardware for use with VTX 1-6
installing VTX software 1-4 to 1-6
integrated controls 3-30
interform connections 3-26 to 3-29

displaying information 3-29
example 3-27, 3-28, 4-10

invalid property settings 4-6

K
Keithley Memory Manager window 1-15,

3-7
Keithley MetraByte Applications

Engineering xvii

L
lines

definition 3-16
deleting 4-11
drawing 4-6
drawing across forms 4-9

lines, see connections
loading forms 4-11
loading VTX controls 1-18
loading VTX controls automatically 1-21
locating VTX control files 1-20
Logic control 3-6

using to manage program flow 3-16

M
memory, reserving 1-15
More Properties window 3-11
moving data between VTX controls 3-18
moving data to and from the VTX

environment 3-19
multiple connections 3-25
multiple forms in an application 3-29

N
NDataDone event 4-16

O
online help system xii
operation-specific properties 3-11
order of multiple connections, displaying 4-7
ordering connections 4-8
output connection points 3-22
overview of the application (tutorial) 2-2
overview of VTX system 3-1
overview of VTX tools 3-5

P
planning the application 4-2
preparing to install VTX software 1-1
preparing to use boards with VTX software

1-6
Procedure Step, using with VTX 4-40

X-5

procedures
connecting VTX controls 2-22
deleting connections, lines, or wires 4-11
drawing connections, lines, or wires

across forms 4-9
installing VTX software 1-4
setting properties at run time 2-24
setting up an application with multiple

forms 4-11
writing code for a ProcessDone event

procedure 4-22
process errors 4-36
process overrun error 4-37
Process property 3-10
process source, changing at run time 3-13
process sources

definition 3-30
overview 3-3

process warnings 4-36
ProcessCTMDone event 4-15
ProcessDone event 4-14

showing status, example 4-27
writing code in the event procedure 4-22

ProcessError event 4-15
processes

definition 3-30
overview 3-3
starting 4-24

processes and process sources 3-3
ProcessSrc property 3-10
program control 3-16, 3-30
program control in the VTX environment

3-16
properties

control 3-8
operation-specific 3-8
setting at run time (in code) 2-24

properties common to all VTX controls 3-10
properties of VTX controls 3-8
Properties window

example with description 3-9
pulse generation 3-6

R
README.WRI file 1-5
registering and configuring boards 1-7
reserving memory 1-15

S
Select Board button xv
selecting files for distribution 4-42
sensor definitions 1-12
Sensor Definitions window 1-13
set the properties (tutorial) 2-9
set, data 3-17, 3-30
setting properties 3-8
setting properties at design time 4-5
setting properties at run time (in code) 2-24
Settings Box (Properties window) 3-9
simulating data acquisition operations 3-7
Single Step, using with VTX 4-40
sizing handles 2-5
source and destination controls 3-14
source controls 3-14, 3-30
specifying engineering units 1-12
starting VTX controls 4-24

example 4-25
Statistics control 3-7
status of operation, displaying 4-27
Status property 3-10, 4-27
stopping VTX controls 4-25

example 4-25
structure of data in the VTX environment

3-17
summary of VTX concepts 3-30
Switch process (Data control) 3-16
system requirements 1-2
SYSTEM.INI file 1-17

X-6 Index

T
technical support xvii
testing, debugging, and preparing for

distribution 4-39
Text control 3-6

displaying data 4-27
events 4-16
setting properties (tutorial) 2-14

thermocouples, setting up conversions 1-12
time interval measurement 3-6
Transfer control 3-6

dimensioning Visual Basic arrays to
receive data 4-23

moving data for display 4-27
starting a VBArray process 4-24
VTX_SetXferVBArray function 4-18

troubleshooting, error handling in code
modules 4-38

tutorial assumptions 2-1

U
Uninstall program 1-6
Up to DAS button xvi
user input 4-21
using online help xii

V
VB Array process

example 4-34
VTX_SetXferVBArray function 4-18

Visual Basic arrays, declaring 4-18
Visual Basic Toolbox, with VTX control

icons displayed 2-4
VTX Configuration utility 3-5, 3-7
VTX control filenames 1-18
VTX control files, location 1-20

VTX controls
common properties 3-10
connecting 4-6
drawing lines 4-6
icons (illustration) 2-4
loading manually 1-19
properties 3-8
starting 4-24
text displayed in control 2-5
wiring 4-6

VTX environment 3-1, 3-30
VTX events 4-13 to 4-15
VTX functions 4-17
VTX Options window 3-7, 4-41
VTX options, enabling and disabling 4-41
VTX system overview 3-1
VTX_GetDASChanRange function 4-18
VTX_SetDASChanRange function 4-17
VTX_SetXferVBArray function

definition 4-18
starting the Transfer control 4-24

W
warning message dialog box 4-41
warnings 4-14, 4-36 to 4-39
wires

definition 3-16
deleting 4-11
drawing 4-6
drawing across forms 4-9

wires, see connections
wiring VTX controls, how to 2-22
write the code (tutorial) 2-24
writing code 4-12

	ToC:

